首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
从江苏省常州市某垃圾渗滤液处理厂的纯氧曝气池中提取活性污泥,筛选获得1株高效好氧反硝化菌CZ1。根据菌株形态、生理生化特性进行初步鉴定,并结合该菌株的16S rDNA基因序列分析,判定该菌株为蜡样芽胞杆菌(Bacillus cereus)。研究了菌株的好氧反硝化特性,结果表明,以硝酸钾为唯一氮源,CZ1在24h内对硝酸盐氮的去除率达到97.69%。同时考察了碳源种类、C/N、温度、初始pH以及溶解氧对该菌株好氧反硝化能力的影响,通过单因素实验获得其最佳好氧反硝化条件:温度35℃,丁二酸钠为唯一碳源,C/N为6,初始pH值为7.0~7.5,转速为160 r/min。  相似文献   

4.
The in vitro effects of high O(2) tensions (P(O2)) on aerobic, enteric pathogens were examined at pressures of up to 3 atm absolute. Organisms from the genera Salmonella, Shigella, and Vibrio were usually subjected to 24-hr exposures. Tensions of 0.87, 1.87, and 2.87 atm absolute of O(2) (plus traces of CO(2) and N(2)) became progressively inhibitory for Salmonella and Shigella growth, but were bactericidal only for V. comma strains at tensions greater than 0.87 atm absolute of O(2). Growth inhibition of enteric organisms resulted from increased P(O2), rather than pressure per se, and could be mitigated nutritionally; an appropriate carbohydrate source is at least partially involved. Further studies with vibrios indicated that such mitigation was independent of medium pH. In addition, a synergistic relationship existed between O(2) and sulfisoxazole when tensions from 0.87 to 2.87 atm absolute of O(2) were maintained for 3 to 24 hr. Synergism occurred even under nutritional conditions which negated growth inhibition by O(2) alone. Bactericidal concentrations of sulfisoxazole, in the presence of increased P(O2), were reducible up to 4,000-fold. The combined procedure employed in this investigation, by use of an antimicrobial drug of known action, which also synergizes with O(2), plus nutritional studies, suggests a means for establishing a site of O(2) toxicity. These data support the concept that O(2) inhibition of growth represents a metabolic disturbance and that metabolic pathways involving p-aminobenzoic acid may be O(2)-labile. Such an approach could also guide development of antimicrobial agents as O(2) substitutes for promoting synergism.  相似文献   

5.
The capacity for anaerobic metabolism of endogenous and selected exogenous substrates in carbon- and energy-starved methanotrophic bacteria was examined. The methanotrophic isolate strain WP 12 survived extended starvation under anoxic conditions while metabolizing 10-fold less endogenous substrate than did parallel cultures starved under oxic conditions. During aerobic starvation, the cell biomass decreased by 25% and protein and lipids were the preferred endogenous substrates. Aerobic protein degradation (24% of total protein) took place almost exclusively during the initial 24 h of starvation. Metabolized carbon was recovered mainly as CO(inf2) during aerobic starvation. In contrast, cell biomass decreased by only 2.4% during anaerobic starvation, and metabolized carbon was recovered mainly as organic solutes in the starvation medium. During anaerobic starvation, only the concentration of intracellular low-molecular-weight compounds decreased, whereas no significant changes were measured for cellular protein, lipids, polysaccharides, and nucleic acids. Strain WP 12 was also capable of a limited anaerobic glucose metabolism in the absence of added electron acceptors. Small amounts of CO(inf2) and organic acids, including acetate, were produced from exogenous glucose under anoxic conditions. Addition of potential anaerobic electron acceptors (fumarate, nitrate, nitrite, or sulfate) to starved cultures of the methanotrophs Methylobacter albus BG8, Methylosinus trichosporium OB3b, and strain WP 12 did not stimulate anaerobic survival. However, anaerobic starvation of these bacteria generally resulted in better survival than did aerobic starvation. The results suggest that methanotrophic bacteria can enter a state of anaerobic dormancy accompanied by a severe attenuation of endogenous metabolism. In this state, maintenance requirements are presumably provided for by fermentation of certain endogenous substrates. In addition, low-level catabolism of exogenous substrates may support long-term anaerobic survival of some methanotrophic bacteria.  相似文献   

6.
Samples of sediment from Lake St. George, Ontario, Canada, were incubated in the laboratory under an initially aerobic gas phase and under anaerobic conditions. In the absence of added nitrate (NO3) there was O2-dependent production of nitrous oxide (N2O), which was inhibited by acetylene (C2H2) and by nitrapyrin, suggesting that coupled nitrification-denitrification was responsible. Denitrification of added NO3 was almost as rapid under an aerobic gas phase as under anaerobic conditions. The N2O that accumulated persisted in the presence of 0.4 atm of C2H2, but was gradually reduced by some sediment samples at lower C2H2 concentrations. Low rates of C2H2 reduction were observed in the dark, were maximal at 0.2 atm of C2H2, and were decreased in the presence of O2, NO3, or both. High rates of light-dependent C2H2 reduction occurred under anaerobic conditions. Predictably, methane (CH4) production, which occurred only under anaerobiosis, was delayed by added NO3 and inhibited by C2H2. Consumption of added CH4 occurred only under aerobic conditions and was inhibited by C2H2.  相似文献   

7.
Eleven strains of alkene-utilizing bacteria belonging to the genera Mycobacterium, Nocardia, and Xanthobacter were tested for their ability to grow with C1 to C6 alkanes, C2 to C6 alkenes, alkadienes, and monoterpenes furnished individually as sole sources of carbon and energy in a mineral salts medium. A limited number of alkenes and alkanes supported growth of the bacteria; some bacteria were unable to grow on any of the saturated hydrocarbons tested. Monoterpenes were frequently used as carbon and energy sources by alkene-utilizing bacteria belonging to the genera Mycobacterium and Nocardia. Washed cell suspensions of alkene-grown bacteria attacked the whole range of alkenes tested, whereas only three strains were able to oxidize alkanes as well. The alkenes tested were oxidized either to water and carbon dioxide or to epoxyalkanes. Few epoxides accumulated in stoichiometric amounts from the corresponding alkenes, because most epoxides formed were further converted to other compounds like alkanediols.  相似文献   

8.
Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N2O production and methane oxidation in soils. Most of our knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. We have conducted a comparative study of levels of aerobic N2O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N2O during aerobic growth was remarkably constant (0.07 to 0.1%) for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N2O when they were supplied with ample amounts of substrates, but the fractions rose sharply (to 1 to 5%) when they were restricted by a low pH or substrate limitation. Phosphate buffer (versus HEPES) doubled the N2O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH4 oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH4 in soils.  相似文献   

9.
Twenty-one ruminal bacteria species were tested for their ability to degrade 2,4,6-trinitrotoluene (TNT) within 24 h. Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Lactobacillus vitulinus, Selenomonas ruminantium, Streptococcus caprinus, and Succinivibrio dextrinosolvens were able to completely degrade 100 mg/L TNT, with <5% of the original TNT recovered as diaminonitrotoluene metabolites. Eubacterium ruminantium, Lactobacillus ruminis, Ruminobacter amylophilus, Streptococcus bovis, and Wolinella succinogenes were able to completely degrade 100 mg/L TNT, with 23–60% of the TNT recovered as aminodinitrotoluene and/or diaminonitrotoluene metabolites. Clostridium polysaccharolyticum, Megasphaera elsdenii, Prevotella bryantii, Prevotella ruminicola, Ruminococcus albus, and Ruminococcus flavefaciens were able to degrade 80–90% of 100 mg/L TNT. Desulfovibrio desulfuricans subsp. desulfuricans, Prevotella albensis, and Treponema bryantii degraded 50–80% of the TNT. Anaerovibrio lipolytica was completely inhibited by 100 mg/L TNT. These results indicate that a variety of rumen bacteria is capable of transforming TNT.  相似文献   

10.
北京典型景观水体好氧反硝化菌组成特征   总被引:1,自引:0,他引:1  
好氧反硝化菌对环境水体氮素的循环起到非常重要的作用。对北京市6个典型景观水体中好氧反硝化菌进行富集培养和分离,并开展菌株的16S rRNA基因测序和组成特征分析。结果表明,从6个水体中共富集分离得到80株好氧反硝化菌,均为变形菌门 (Proteobacteria),聚类于其3个纲(α-Proteobacteria、β-Proteobacteria、γ-Proteobacteria),分属于9个属,31个物种。其中90%左右的菌株具有良好的好氧反硝化能力,是水体进行生物脱氮修复的重要微生物基础。在不同景观水体中,好氧反硝化菌表现出较为明显的分布差异性和性能差异性,除了普遍存在的假单胞菌属(Pseudomonas)和不动杆菌属(Acinetobacter)外,每个水体基本都有属于自己的特异菌属,其中重要的特异菌属包括Alishewanella、Delftia、HydrogenophagaRheinheimera,这对水体修复具有指导意义。  相似文献   

11.
We compared the performance of aerobic Cr(VI)-reducing bacteria isolated from Cr(VI)-contaminated soil in pure and mixed cultures of five isolated strains. The mixed culture had increased reduction rates compared to individual cultures. Cr(VI) reduction was observed in sterile soil inoculated with Pseudomonas fluorescens and in non-sterile soil with and without inoculation with P. fluorescens at initial pore water concentrations up to 1,600 mg Cr(VI)/L, whereas in culture the maximum inhibitory concentration was 500 mg Cr(VI)/L. Linear rates of Cr(VI) reduction in non-sterile soil amended with peptone were ~5 to 8 times higher than those observed in the mixed culture. Inoculation of non-sterile soil with P. fluorescens did not further enhance Cr(VI) reduction rates. Our results indicate that evaluation of Cr(VI) reduction capacity in Cr(VI)-contaminated soil for in-situ bioremediation purposes should not be done solely in pure culture. Although the latter may be used initially to assess the effects of process parameters (e.g., pH, temperature), the rate and extent of Cr(VI) reduction should be determined in soil for bioremediation design purposes.  相似文献   

12.
The denitrifying behavior of selected soil bacteria was compared in a culture solution and in soil that was sterilized by autoclaving. The essential characteristics concerning nitrate reduction and the formation of nitrogenous gases did not change significantly for most bacteria in the two environments. Bacteria whose denitrification product was nitrous oxide evolved the same gas both in soil and in a liquid system, whereas other bacteria formed only nitrogen gas. The validity of laboratory observations in relation to field studies in the domain of denitrification is discussed and evaluated.  相似文献   

13.
Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.  相似文献   

14.
The Late Cretaceous (Campanian) Tepee Buttes represent a series of conical, fossiliferous limestone deposits embedded in marine shales that deposited in the Western Interior Seaway. The previously suggested origin of the Tepee Buttes at methane-seeps was confirmed by this study. δ13C values as low as ?50‰ of early diagenetic carbonate phases of two Tepee Buttes near Pueblo (Colorado) reveal that methane was the major carbon source. Molecular fossils released from a methane-seep limestone contain abundant 13C-depleted archaeal lipids (PMI, biphytane; δ 13C: ?118 and ?102‰), derived from anaerobic methanotrophs. A suite of 13C-depleted bacterial biomarkers (branched fatty acids; ?73 to ?51‰) reflects the former presence of sulfate-reducing bacteria, corroborating that a syntrophic consortium of archaea and bacteria mediating anaerobic oxidation of methane already existed in Cretaceous times. Molecular fossils also suggest that methane was not exclusively oxidized in an anaerobic process. A series of unusual C34/C35-8,14-secohexahydrobenzohopanes with low δ13C values (?110 and ?107‰) points to the presence of aerobic methanotrophic bacteria at the ancient seep site.  相似文献   

15.
自洱海十个点位的沉积物中富集筛选出101株反硝化细菌并从中筛选出1株较强反硝化能力的细菌,命名为EH314。该细菌接触酶(过氧化氢酶)试验、产硫化氢试验和淀粉水解均为阳性,葡萄糖氧化发酵实验结果为氧化菌,产脂酶(Tween 80)试验结果为阴性;初步鉴定该菌为产碱杆菌属细菌;对细菌反硝化能力进行测定发现,菌株EH314能有效地降解水体中的硝酸盐且反硝化可在有氧条件下进行。  相似文献   

16.
Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.  相似文献   

17.
Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite.  相似文献   

18.
The metabolism of atmospheric methane in a forest soil was studied by radiotracer techniques. Maximum (sup14)CH(inf4) oxidation (163.5 pmol of C cm(sup-3) h(sup-1)) and (sup14)C assimilation (50.3 pmol of C cm(sup-3) h(sup-1)) occurred at the A(inf2) horizon located 15 to 18 cm below the soil surface. At this depth, 31 to 43% of the atmospheric methane oxidized was assimilated into microbial biomass; the remaining methane was recovered as (sup14)CO(inf2). Methane-derived carbon was incorporated into all major cell macromolecules by the soil microorganisms (50% as proteins, 19% as nucleic acids and polysaccharides, and 5% as lipids). The percentage of methane assimilated (carbon conversion efficiency) remained constant at temperatures between 5 and 20(deg)C, followed by a decrease at 30(deg)C. The carbon conversion efficiency did not increase at methane concentrations between 1.7 and 1,000 ppm. In contrast, the overall methane oxidation activity increased at elevated methane concentrations, with an apparent K(infm) of 21 ppm (31 nM CH(inf4)) and a V(infmax) of 188 pmol of CH(inf4) cm(sup-3) h(sup-1). Methane oxidizers from soil depths with maximum methanotrophic activity respired approximately 1 to 3% of the assimilated methane-derived carbon per day. This apparent endogenous respiration did not change significantly in the absence of methane. Similarly, the potential for oxidation of atmospheric methane was relatively insensitive to methane starvation. Soil samples from depths above and below the zone with maximum atmospheric methane oxidation activity showed a dramatic increase in the turnover of the methane assimilated (>20 times increase). Physical disturbance such as sieving or mixing of soil samples decreased methane oxidation and assimilation by 50 to 58% but did not alter the carbon conversion efficiency. Ammonia addition (0.1 or 1.0 (mu)mol g [fresh weight](sup-1)) decreased both methane oxidation and carbon conversion efficiency. This resulted in a dramatic decrease in methane assimilation (85 to 99%). In addition, ammonia-treated soil showed up to 10 times greater turnover of the assimilated methane-derived carbon (relative to untreated soil). The results suggest a potential for microbial growth on atmospheric methane. However, growth was regulated strongly by soil parameters other than the methane concentration. The pattern observed for metabolism of atmospheric methane in soils was not consistent with the physiology of known methanotrophic bacteria.  相似文献   

19.
Methods are described for the detection of low numbers of bacteria by monitoring (14)CO(2) evolved from (14)C-labeled substrates. Cell suspensions are filtered with membrane filters, and the filter is then moistened with 0.1 ml of labeled medium in a small, closed apparatus. Evolved (14)CO(2) is collected with Ba(OH)(2)-moistened filter pads and assayed with conventional radioactivity counting equipment. The kinetics of (14)CO(2) evolution are shown for several species of bacteria. Fewer than 100 colony-forming units of most species tested were detected in 2 h or less. Bacteria were inoculated into blood and the mixture was treated to lyse the blood cells. The suspension ws filtered and the filter was placed in a small volume of labeled medium. The evolved (14)CO(2) was trapped and counted. A key development in the methodology was finding that an aqueous solution of Rhyozyme and Triton X-100 produced lysis of blood but was not detrimental to bacteria.  相似文献   

20.
Methylococcus capsulatus grows only on methane or methanol as its sole source of carbon and energy. Some amino acids serve as nitrogen sources and are converted to keto acids which accumulate in the culture medium. Cell suspensions oxidize methane, methanol, formaldehyde, and formate to carbon dioxide. Other primary alcohols are oxidized only to the corresponding aldehydes. Oxidation of formate by cell suspensions is more sensitive to inhibition by cyanide than is the oxidation of other one carbon compounds. This is due to the cyanide sensitivity of a soluble nicotinamide adenine dinucleotide-specific formate dehydrogenase. Oxidation of formaldehyde and methanol is catalyzed by a nonspecific primary alcohol dehydrogenase which is activated by ammonium ions and is independent of pyridine nucleotides. Some comparisons are made with a strain of Pseudomonas methanica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号