首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradavidin II is a biotin‐binding protein from Bradyrhizobium japonicum that resembles chicken avidin and bacterial streptavidin. A biophysical characterization was carried out using dynamic light scattering, native mass spectrometry, differential scanning calorimetry, and isothermal titration calorimetry combined with structural characterization using X‐ray crystallography. These observations revealed that bradavidin II differs from canonical homotetrameric avidin protein family members in its quaternary structure. In contrast with the other avidins, bradavidin II appears to have a dynamic (transient) oligomeric state in solution. It is monomeric at low protein concentrations but forms higher oligomeric assemblies at higher concentrations. The crystal structure of bradavidin II revealed an important role for Phe42 in shielding the bound ligand from surrounding water molecules, thus functionally replacing the L7,8 loop essential for tight ligand binding in avidin and streptavidin. This bradavidin II characterization opens new avenues for oligomerization‐independent biotin‐binding protein development.  相似文献   

2.
The protein avidin found in egg white seems optimized for binding the small vitamin biotin as a stable homotetramer. Indeed, along with its streptavidin ortholog in the bacterium Streptomyces avidinii, this protein shows the strongest known noncovalent bond of a protein with a small ligand. A third known member of the avidin family, as similar to avidin as is streptavidin, is found at the C-terminal ends of the multidomain fibropellin proteins found in sea urchin. The fibropellins form a layer known as the apical lamina that surrounds the sea urchin embryo throughout development. Based upon the structure of avidin, we deduced a structural model for the avidin-like domain of the fibropellins and found that computational modeling predicts a lack of biotin binding and the preservation of tetramerization. To test this prediction we expressed and purified the fibropellin avidin-like domain and found it indeed to be a homotetramer incapable of binding biotin. Several lines of evidence suggest that the avidin-like domain causes the entire fibropellin protein to tetramerize. We suggest that the presence of the avidin-like domain serves a structural (tetrameric form) rather than functional (biotin-binding) role and may therefore be a molecular instance of exaptation-the modification of an existing function toward a new function. Finally, based upon the oligomerization of the avidin-like domain, we propose a model for the overall structure of the apical lamina.  相似文献   

3.
Aptamers, an emerging class of therapeutics, are DNA or RNA molecules that are selected to bind molecular targets that range from small organic compounds to large proteins. All of the determined structures of aptamers in complex with small molecule targets show that aptamers cage such ligands. In structures of aptamers in complex with proteins that naturally bind nucleic acid, the aptamers occupy the nucleic acid binding site and often mimic the natural interactions. Here we present a crystal structure of an RNA aptamer bound to human thrombin, a protein that does not naturally bind nucleic acid, at 1.9 A resolution. The aptamer, which adheres to thrombin at the binding site for heparin, presents an extended molecular surface that is complementary to the protein. Protein recognition involves the stacking of single-stranded adenine bases at the core of the tertiary fold with arginine side chains. These results exemplify how RNA aptamers can fold into intricate conformations that allow them to interact closely with extended surfaces on non-RNA binding proteins.  相似文献   

4.
Ligand binding to proteins is a key process in cell biochemistry. The interaction usually induces modifications in the unfolding thermodynamic parameters of the macromolecule due to the coupling of unfolding and binding equilibria. In addition, these modifications can be attended by changes in protein structure and/or conformational flexibility induced by ligand binding. In this work, we have explored the effect of biotin binding on conformation and dynamic properties of avidin by using infrared spectroscopy including kinetics of hydrogen/deuterium exchange. Our results, along with previously thermodynamic published data, indicate a clear correlation between thermostability and protein compactness. In addition, our results also help to interpret the thermodynamic binding parameters of the exceptionally stable biotin:AVD complex.  相似文献   

5.
The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.  相似文献   

6.
Avidins represent an interesting group of proteins showing high structural similarity and ligand-binding properties but low similarity in primary structure. In this study, we show that it is possible to create functional chimeric proteins from the avidin protein family when applying DNA family shuffling to the genes of the avidin protein family: avidin, avidin related gene 2 and biotin-binding protein A. The novel chimeric proteins were selected by phage display biopanning against biotin, and the selected enriched proteins were characterized, displaying diverse features distinct from the parental genes, including binding to cysteine.  相似文献   

7.
Molecular recognition force spectroscopy, a biosensing atomic force microscopy technique allows to characterise the dissociation of ligand–receptor complexes at the molecular level. Here, we used molecular recognition force spectroscopy to study the binding capability of recently developed testosterone binders. The two avidin‐based proteins called sbAvd‐1 and sbAvd‐2 are expected to bind both testosterone and biotin but differ in their binding behaviour towards these ligands. To explore the ligand binding and dissociation energy landscape of these proteins, we tethered biotin or testosterone to the atomic force microscopy probe while the testosterone‐binding protein was immobilized on the surface. Repeated formation and rupture of the ligand–receptor complex at different pulling velocities allowed determination of the loading rate dependence of the complex‐rupturing force. In this way, we obtained the molecular dissociation rate (koff) and energy landscape distances (xβ) of the four possible complexes: sbAvd‐1‐biotin, sbAvd‐1‐testosterone, sbAvd‐2‐biotin and sbAvd‐2‐testosterone. It was found that the kinetic off‐rates for both proteins and both ligands are similar. In contrast, the xβ values, as well as the probability of complex formations, varied considerably. In addition, competitive binding experiments with biotin and testosterone in solution differ significantly for the two testosterone‐binding proteins, implying a decreased cross‐reactivity of sbAvd‐2. Unravelling the binding behaviour of the investigated testosterone‐binding proteins is expected to improve their usability for possible sensing applications. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Oxidative damage of DNA results in the formation of many products, including 8-oxodeoxyguanosine, which has been used as a marker to quantify DNA damage. Earlier studies have demonstrated that avidin, a protein prevalent in egg-white and which has high affinity for the vitamin biotin, binds to 8-oxodeoxyguanosine and related bases. In this study, we have determined crystal structures of avidin in complex with 8-oxodeoxyguanosine and 8-oxodeoxyadenosine. In each case, the base is observed to bind within the biotin-binding site of avidin. However, the mode of association between the bases and the protein varies and, unlike in the avidin:biotin complex, complete ordering of the protein in this region does not accompany binding. Fluorescence studies indicate that in solution the individual bases, and a range of oligonucleotides, bind to avidin with micromolar affinity. Only one of the modes of binding observed is consistent with recognition of oxidised purines when incorporated within a DNA oligomer, and from this structure a model is proposed for the selective binding of avidin to DNA containing oxidatively damaged deoxyguanosine. These studies illustrate the molecular basis by which avidin might act as a marker of DNA damage, although the low levels of binding observed are inconsistent with the recognition of oxidised purines forming a major physiological role for avidin.  相似文献   

9.
Fourier-transform infrared studies have been carried out to investigate the secondary structure and thermal stability of hen egg white avidin and its complexes with biotin and with a biotinylated lipid derivative, N-biotinyl dimyristoyl phosphatidylethanolamine (DMBPE) in aqueous dispersion. Analysis of the amide I stretching band of avidin yielded a secondary structural content composed of approximately 66% beta-sheet and extended structures, with the remainder being attributed to disordered structure and beta-turns. Binding of biotin or specific association with the biotinylated lipid DMBPE did not result in any appreciable changes in the secondary structure content of the protein, but a change in hydrogen bond stability of the beta-sheet or extended chain regions was indicated. The latter effect was enhanced by surface interactions in the case of the biotin-lipid assemblies, as was demonstrated by electrostatic binding to a nonspecific negatively charged lipid. Difference spectra of the bound biotin implicated a direct involvement of the ureido moiety in the ligand interaction that was consistent with hydrogen bonding to amino acid residues in the avidin protein. It was found that complexation with avidin leads to a decrease in bond length of the biotin ureido carbonyl group that is consistent with a reduction of sp3 character of the C-O bond when it is hydrogen bonded to the protein. Studies of the temperature dependence of the spectra revealed that for avidin alone the secondary structure was unaltered up to approximately 75 degrees C, above which the protein undergoes a highly cooperative transition to an unfolded state with concomitant loss of ordered secondary structure. The complexes of avidin with both biotin and membrane-bound DMBPE lipid assemblies display a large increase in thermal stability compared with the native protein.  相似文献   

10.
Previous solution structures of ligand-binding RNA aptamers have shown that molecular recognition is achieved by the folding of an initially unstructured RNA around its cognate ligand, coupling the processes of RNA folding and binding. The 3 A crystal structure of the cyanocobalamin (vitamin B12) aptamer reported here suggests a different approach to molecular recognition in which elements of RNA secondary structure combine to create a solvent-accessible docking surface for a large, complex ligand. Central to this structure is a locally folding RNA triplex, stabilized by a novel three-stranded zipper. Perpendicular stacking of a duplex on this triplex creates a cleft that functions as the vitamin B12 binding site. Complementary packing of hydrophobic surfaces, direct hydrogen bonding and dipolar interactions between the ligand and the RNA appear to contribute to binding. The nature of the interactions that stabilize complex formation and the possible uncoupling of folding and binding for this RNA suggest a strong mechanistic similarity to typical protein-ligand complexes.  相似文献   

11.
12.
A recently reported dual-chain avidin was modified further to contain two distinct, independent types of ligand-binding sites within a single polypeptide chain. Chicken avidin is normally a tetrameric glycoprotein that binds water-soluble d-biotin with extreme affinity (K(d) approximately 10(-15) M). Avidin is utilized in various applications and techniques in the life sciences and in the nanosciences. In a recent study, we described a novel avidin monomer-fusion chimera that joins two circularly permuted monomers into a single polypeptide chain. Two of these dual-chain avidins were observed to associate spontaneously to form a dimer equivalent to the wt tetramer. In the present study, we successfully used this scaffold to generate avidins in which the neighboring biotin-binding sites of dual-chain avidin exhibit two different affinities for biotin. In these novel avidins, one of the two binding sites in each polypeptide chain, the pseudodimer, is genetically modified to have lower binding affinity for biotin, whereas the remaining binding site still exhibits the high-affinity characteristic of the wt protein. The pseudotetramer (i.e., a dimer of dual-chain avidins) has two high and two lower affinity biotin-binding sites. The usefulness of these novel proteins was demonstrated by immobilizing dual-affinity avidin with its high-affinity sites. The sites with lower affinity were then used for affinity purification of a biotinylated enzyme. These "dual-affinity" avidin molecules open up wholly new possibilities in avidin-biotin technology, where they may have uses as novel bioseparation tools, carrier proteins, or nanoscale adapters.  相似文献   

13.
14.
In vivo recognition of an RNA aptamer by its transcription factor target   总被引:2,自引:0,他引:2  
Cassiday LA  Maher LJ 《Biochemistry》2001,40(8):2433-2438
  相似文献   

15.
Chicken avidin, a homotetramer that binds four molecules of biotin was converted to a monomeric form by successive mutations of interface residues to alanine. The major contribution to monomer formation was the mutation of two aspartic acid residues, which together account for ten hydrogen bonding interactions at the 1-4 interface. Mutation of these residues, together with the three hydrophobic residues at the 1-3 interface, led to stable monomer formation in the absence of biotin. Upon addition of biotin, the monomeric avidin reassociated to the tetramer, which exhibited properties similar to those of native avidin, with respect to biotin binding, thermostability, and protease resistance. To our knowledge, these unexpected results represent the first example of a small monovalent ligand that induces oligomerization of a monomeric protein. This study may suggest a biological role for low molecular weight ligands in inducing oligomerization and in maintaining the stability of multimeric protein assemblies.  相似文献   

16.
We have derivatized liposomes with antibodies by using avidin to crosslink biotinylated phospholipid molecules in the liposome membranes with biotinylated antibody molecules. A comparison of the biotin binding activity of avidin in solution and avidin associated with liposomes shows that avidin bound to biotinylated phospholipid in liposome membranes retains full binding activity for additional biotin molecules. Changes in the fluorescence spectrum of avidin have been used to characterize the binding capacity of avidin for biotin in solution, and change in intensity of light scattered due to aggregation of liposomes was used to measure the biotin binding activity of avidin associated with liposomes. Relative amounts of the biotinylated phospholipid, avidin, and biotinylated antibody have been optimized to produce stable liposomes which are derivatized with up to 1.7 nmol of antibody/mumol of lipid. These derivatized liposomes are highly reactive to immunospecific aggregation in the presence of multivalent antigen. A linear increase in light scattering was recorded between 1 and 10 pmol of antigen. This work shows that liposomes containing biotinylated phospholipid can be a successful generic reagent for immunoassays.  相似文献   

17.
An aptamer can be redesigned to new functional molecules by conjugating with other oligonucleotides. However, it requires experimental trials to optimize the conjugating module with the sensitivity and selectivity toward a target. To reduce these efforts, we report rationally-designed modular allosteric aptamer sensor (MAAS), which is composed of coupled two aptamers and the regulator. For label-free protein detection, the protein-aptamer was conjugated with the malachite green (MG) aptamer for signaling. The MAAS additionally has the regulator domain which is designed to hybridize to a protein binding domain. The regulator makes MAAS to be inactive by destructing the original structure of the two aptamers. However, its conformation becomes active by dissociating the hybridization from the protein recognition signal, thereby inducing the binding of MG emitting the enhanced fluorescence. The design of regulator is based on the thermodynamic energy difference by the RNA conformational change and protein-aptamer affinity. Here we first demonstrated the MAAS for hepatitis C helicase and replicase. The target proteins were detected up to 250nM with minimized blank signals and displayed high specificities 10-fold greater than in non-specific proteins. The MAAS provides valuable tools that can be adapted to a wide range of configurations in bioanalytical applications.  相似文献   

18.
High‐affinity molecular pairs provide a convenient and flexible modular base for the design of molecular probes and protein/antigen assays. Specificity and sensitivity performance indicators of a bioassay critically depend on the dissociation constant (KD) of the molecular pair, with avidin:biotin being the state‐of‐the‐art molecular pair (KD ~ 1 fM) used almost universally for applications in the fields of nanotechnology and proteomics. In this paper, we present an alternative high‐affinity protein pair, barstar:barnase (KD ~ 10 fM), which addresses several shortfalls of the avidin:biotin system, including non‐negligible background due to the non‐specific binding. A quantitative assessment of the non?specific binding carried out using a model assay revealed inherent irreproducibility of the [strept]avidin:biotin‐based assays, attributed to the avidin binding to solid phases, endogenous biotin molecules and serum proteins. On the other hand, the model assays assembled via a barstar:barnase protein linker proved to be immune to such non‐specific binding, showing good prospects for high‐sensitivity rare biomolecular event nanoproteomic assays.  相似文献   

19.
We present a novel column chromatography technique for recovery and purification of lipid vesicles, which can be extended to other macromolecular assemblies. This technique is based on reversible binding of biotinylated lipids to monomeric avidin. Unlike the very strong binding of biotin and biotin-functionalized molecules to streptavidin, the interaction between biotin-functionalized molecules and monomeric avidin can be disrupted effectively by ligand competition from free biotin. In this work, biotin-functionalized lipids (biotin-PEG-PE) were incorporated into synthetic lipid vesicles (DOPC), resulting in unilamellar biotinylated lipid vesicles. The vesicles were bound to immobilized monomeric avidin, washed extensively with buffer, and eluted with a buffer supplemented with free biotin. Increasing the biotinyl lipid molar ratio beyond 0.53% of all lipids did not increase the efficiency of vesicle recovery. A simple adsorption model suggests 1.1 x 10(13) active binding sites/mL of resin with an equilibrium binding constant of K = 1.0 x 10(8) M(-1). We also show that this method is very robust and reproducible and can accommodate vesicles of varying sizes with diverse contents. This method can be scaled up to larger columns and/or high throughput analysis, such as a 96-well plate format.  相似文献   

20.
Wang W  Wang J  Kollman PA 《Proteins》1999,34(3):395-402
Recently a semiempirical method has been proposed by Aqvist et al. to calculate absolute and relative binding free energies. In this method, the absolute binding free energy of a ligand is estimated as deltaGbind = alpha + beta, where Vel(bound) and Vvdw(bound) are the electrostatic and van der Waals interaction energies between the ligand and the solvated protein from an molecular dynamics (MD) trajectory with ligand bound to protein and Vel(free) and Vel(free) and Vvdw(free) are the electrostatic and van der Waals interaction energies between the ligand and the water from an MD trajectory with the ligand in water. A set of values, alpha = 0.5 and beta = 0.16, was found to give results in good agreement with experimental data. Later, however, different optimal values of beta were found in studies of compounds binding to P450cam and avidin. The present work investigates how the optimal value of beta depends on the nature of binding sites for different protein-ligand interactions. By examining seven ligands interacting with five proteins, we have discovered a linear correlation between the value of beta and the weighted non-polar desolvation ratio (WNDR), with a correlation coefficient of 0.96. We have also examined the ability of this correlation to predict optimal values of beta for different ligands binding to a single protein. We studied twelve neutral compounds bound to avidin. In this case, the WNDR approach gave a better estimate of the absolute binding free energies than results obtained using the fixed value of beta found for biotin-avidin. In terms of reproducing the relative binding free energy to biotin, the fixed-beta value gave better results for compounds similar to biotin, but for compounds less similar to biotin, the WNDR approach led to better relative binding free energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号