首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this article, we develop an extensive search procedure of the multi‐dimensional folding energy landscape of a protein. Our aim is to identify different classes of structures that have different aggregation propensities and catalytic activity. Following earlier studies by Daggett et al. [Jong, D. D.; Riley, R.: Alonso, D.O.: Dagett, V. J. Mol. Biol. 2002, 319, 229], a series of high temperature all‐atom classical molecular simulation studies has been carried out to derive a multi‐dimensional property space. Dynamical changes in these properties are then monitored by projecting them along a one‐dimensional reaction coordinate, dmean. We have focused on the application of this method to partition a wide array of conformations of wild type human carbonic anhydrase II (HCA II) and its unstable mutant His‐107‐Tyr along dmean by sampling a 35‐dimensional property space. The resultant partitioning not only reveals the distribution of conformations corresponding to stable structures of HCA II and its mutant, but also allows the monitoring of several partially unfolded and less stable conformations of the mutant. We have investigated the population of these conformations at different stages of unfolding and collected separate sets of structures that are widely separated in the property space. The dynamical diversity of these sets are examined in terms of the loading of their respective first principal component. The partially unfolded structures thus collected are qualitatively mapped on to the experimentally postulated light molten globule (MGL) and molten globule (MG) intermediates with distinct aggregation propensities and catalytic activities. Proteins 2016; 84:726–743. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
We report a comparative study on the use of four different mesoporous titanium dioxide (TiO2) photo‐electrodes for the fabrication of solid‐state dye‐sensitized solar cells (sDSSCs). The photovoltaic parameters of the device correlate with several intrinsic properties of the film, based not only on its morphological features, as commonly considered in standard characterizations, but also on the transport and the electronic properties of the photo‐electrode. These properties differ significantly for TiO2 electrodes processed using different colloidal pastes, and are decisive for the photovoltaic efficiency, ranging from 3.7% up to 5.1%. In particular, the dielectric permittivity of each mesoporous layer (εeff) and the number of traps (Nt) determined by the space‐charge‐limited current (SCLC) theory are found to be a bottle‐neck for the charge transport, greatly influencing the fill factor (FF) and open circuit voltage (Voc) of the cells. In addition, a direct correlation between TiO2 surface potential with the Voc was established. Cross‐analysis of key macroscopic parameters of the films prior to integration in the devices, in particular focusing on the determination of the capacitance and surface potential shift of the TiO2 mesoporous anode, represents a straightforward yet powerful method to screen and select the most suitable TiO2 for applications in sDSSCs.  相似文献   

3.
Habitat structural complexity is one of the most important factors in determining the makeup of biological communities. Recent advances in structure‐from‐motion and photogrammetry have resulted in a proliferation of 3D digital representations of habitats from which structural complexity can be measured. Little attention has been paid to quantifying the measurement errors associated with these techniques, including the variability of results under different surveying and environmental conditions. Such errors have the potential to confound studies that compare habitat complexity over space and time. This study evaluated the accuracy, precision, and bias in measurements of marine habitat structural complexity derived from structure‐from‐motion and photogrammetric measurements using repeated surveys of artificial reefs (with known structure) as well as natural coral reefs. We quantified measurement errors as a function of survey image coverage, actual surface rugosity, and the morphological community composition of the habitat‐forming organisms (reef corals). Our results indicated that measurements could be biased by up to 7.5% of the total observed ranges of structural complexity based on the environmental conditions present during any particular survey. Positive relationships were found between measurement errors and actual complexity, and the strength of these relationships was increased when coral morphology and abundance were also used as predictors. The numerous advantages of structure‐from‐motion and photogrammetry techniques for quantifying and investigating marine habitats will mean that they are likely to replace traditional measurement techniques (e.g., chain‐and‐tape). To this end, our results have important implications for data collection and the interpretation of measurements when examining changes in habitat complexity using structure‐from‐motion and photogrammetry.  相似文献   

4.
Variations in photosynthesis still cause substantial uncertainties in predicting photosynthetic CO2 uptake rates and monitoring plant stress. Changes in actual photosynthesis that are not related to greenness of vegetation are difficult to measure by reflectance based optical remote sensing techniques. Several activities are underway to evaluate the sun‐induced fluorescence signal on the ground and on a coarse spatial scale using space‐borne imaging spectrometers. Intermediate‐scale observations using airborne‐based imaging spectroscopy, which are critical to bridge the existing gap between small‐scale field studies and global observations, are still insufficient. Here we present the first validated maps of sun‐induced fluorescence in that critical, intermediate spatial resolution, employing the novel airborne imaging spectrometer HyPlant. HyPlant has an unprecedented spectral resolution, which allows for the first time quantifying sun‐induced fluorescence fluxes in physical units according to the Fraunhofer Line Depth Principle that exploits solar and atmospheric absorption bands. Maps of sun‐induced fluorescence show a large spatial variability between different vegetation types, which complement classical remote sensing approaches. Different crop types largely differ in emitting fluorescence that additionally changes within the seasonal cycle and thus may be related to the seasonal activation and deactivation of the photosynthetic machinery. We argue that sun‐induced fluorescence emission is related to two processes: (i) the total absorbed radiation by photosynthetically active chlorophyll; and (ii) the functional status of actual photosynthesis and vegetation stress.  相似文献   

5.
Indirect immunofluorescence of mouse caput and caudal sperm shows distinctly different distributions of Spam1 protein, which is associated with structural and functional differences of the molecule. Spam1 is uniformly distributed over the surface of the head of caput sperm while in caudal sperm, light and confocal microscopy demonstrate that it is localized to the anterior and posterior regions. The hyaluronidase activity of Spam1 in acrosome‐intact caput sperm was significantly lower (4.3‐fold; P < 0.0001) than that of caudal sperm. The increase in enzymatic activity in caudal sperm is accompanied by a reduction in the molecular weight (MW): in extracts from caput sperm there was a major band at ∼74 kDa and a minor band at ∼67 kDa; while for the cauda there was a major band at ∼67 kDa and minor bands at ∼70 and ∼56 kDa. Additionally, the bands from caput sperm were 4.9 to 7.7‐fold less intense than those from caudal sperm. This decreased affinity for the polyclonal anti‐Spam1 suggests the presence of different surface characteristics of the molecule from the two epididymal regions. Computer analysis of the protein structure from Spam1 cDNA sequence reveals four putative N‐linked glycosylation sites, and enzymatic deglycosylation suggests that all sites are functional. After endoglycosidase activity of extracts from caput and caudal sperm, both show a major band with a MW of ∼56 kDa, the size of the membrane‐anchored polypeptide backbone. Based on the difference in size and intensity of the Spam1 bands and hyaluronidase activities from caput and caudal sperm, the data suggest that the activation of Spam1 during epididymal maturation is regulated by deglycosylation. Mol. Reprod. Dev. 52:196–206, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

7.
Murundus are earth mounds widespread in most landscapes in the semi‐arid region of Brazil. Evidence obtained from predictive modelling has suggested a termite origin for these structures, opening up new opportunities for further research. Distribution of densely packed murundus at larger spatial scales is most related to climatic regime and soil nutrient availability. However, factors and processes underlying their distribution and density at smaller spatial scales are not yet fully understood. In this study, we adopted an approach based on mapping point data using high‐resolution satellite imagery, multi‐scale second‐order analysis and general linear models to examine the fine‐scale spatial distribution and density of murundus. Our results suggest that the distribution of those structures within densely packed areas is regulated by more than one process acting or interacting across multiple spatial scales. All densely packed murundus showed a significant regular distribution at the distance scale of up to 50 m radially and a completely random distribution across all other upper distance scales. We interpret the regular pattern as a result of competition for foraging territories between different termite colonies during the process formation of densely packed murundus. The random pattern at larger distance scales (above 50 m radially) can be attributed to habitat selection preferences by termite species builders of murundus mediated by local environmental resources and conditions (i.e. availability of food resources and nesting and open habitat), which would be randomly distributed in space. Thus, at finer spatial scales murundus distributions are associated with biotic interactions acting on an abiotic template. On the basis of significant linear correlations, we suggest that the density of murundus is strongly related to local temperature regime with soil‐type influencing its effect on the murundus densities. Our findings provide novel evidences that mound‐building termites are involved in the formation of murundus in the semi‐arid region of Brazil.  相似文献   

8.
Studies on the interactions between L ‐O‐ phosphoserine, as one of the simplest fragments of membrane components, and the Cinchona alkaloid cinchonine, in the crystalline state were performed. Cinchoninium L ‐O‐phosposerine salt dihydrate (PhSerCin) crystallizes in a monoclinic crystal system, space group P21, with unit cell parameters: a = 8.45400(10) Å, b = 7.17100(10) Å, c = 20.7760(4) Å, α = 90°, β = 98.7830(10)°, γ = 90°, Z = 2. The asymmetric unit consists of the cinchoninium cation linked by hydrogen bonds to a phosphoserine anion and two water molecules. Intermolecular hydrogen bonds connecting phosphoserine anions via water molecules form chains extended along the b axis. Two such chains symmetrically related by twofold screw axis create a “channel.” On both sides of this channel cinchonine cations are attached by hydrogen bonds in which the atoms N1, O12, and water molecules participate. This arrangement mimics the system of bilayer biological membrane. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Organic solar cells are promising in terms of full‐solution‐processing which enables low‐cost and large‐scale fabrication. While single‐junction solar cells have seen a boost in power conversion efficiency (PCE), multi‐junction solar cells are promising to further enhance the PCE. In all‐solution‐processed multi‐junction solar cells, interfacial losses are often encountered between hole‐transporting layer (HTL) and the active layers and therefore greatly limit the application of newly developed high‐performance donor and acceptor materials in multi‐junction solar cells. Here, the authors report on a systematic study of interface losses in both single‐junction and multi‐junction solar cells based on representative polymer donors and HTLs using electron spectroscopy and time‐of‐flight secondary ion mass spectrometry. It is found that a facile mixed HTL containing poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and MoO x nanoparticles successfully overcomes the interfacial losses in both single‐ and multi‐junction solar cells based on various active layers by reducing interface protonation, promoting better energy‐level alignment, and forming a dense and smooth layer. Solution‐processed single‐junction solar cells are demonstrated to reach the same performance as with evaporated MoO x (over 7%). Multi‐junction solar cells with polymers containing nitrogen atoms as the first layer and the mixed PEDOT:PSS and MoO x nanoparticles as hole extraction layer reach fill factor (FF) of over 60%, and PCE of over 8%, while the identical stack with pristine PEDOT:PSS or MoO x nanoparticles show FF smaller than 50% and PCE less than 5%.  相似文献   

10.
Achieving high‐performance Na‐ion capacitors (NICs) has the particular challenge of matching both capacity and kinetics between the anode and cathode. Here a high‐power NIC full device constructed from 2D metal–organic framework (MOFs) array is reported as the reactive template. The MOF array is converted to N‐doped mesoporous carbon nanosheets (mp‐CNSs), which are then uniformly encapsulated with VO2 and Na3V2(PO4)3 (NVP) nanoparticles as the electroactive materials. By this method, the high‐power performance of the battery materials is enabled to be enhanced significantly. It is discovered that such hybrid NVP@mp‐CNSs array can render ultrahigh rate capability (up to 200 C, equivalent to discharge within 18 s) and superior cycle performance, which outperforms all NVP‐based Na‐ion battery cathodes reported so far. A quasi‐solid‐state flexible NIC based on the NVP@mp‐CNSs cathode and the VO2@mp‐CNSs anode is further assembled. This hybrid NIC device delivers both high energy density and power density as well as a good cycle stability (78% retention after 2000 cycles at 1 A g?1). The results demonstrate the powerfulness of MOF arrays as the reactor for fabricating electrode materials.  相似文献   

11.
A symmetric solid‐state battery based on organic porous electrodes is fabricated using scalable spray‐printing. The active electrode material is based on a textile dye (disperse blue 134 anthraquinone) and is capable of forming divalent cations and anions in oxidation and reduction processes. The resulting molecule can be used in both negative and positive electrode reactions. After spray printing an inter‐connected pore honeycomb electrode, a solid‐state electrolyte (σLi: × 10?4 S cm?1) based on a polymeric ionic liquid is spray‐printed as a second layer and infiltrated through the porous electrodes. A symmetric all‐organic battery is then formed with the addition of another identical set of electrode and electrolyte layers. Both density functional theory calculations and charge‐discharge profiles show that the potentials for the negative and positive electrode reactions are amongst the lowest (≈2.0 V vs Li) and the highest (≈3.5 V vs Li), respectively, for quinone‐type molecules. Over the C‐rate range 0.2 to 5 C, the battery has a discharge cell voltage of more than 1 V even up to 250 charge‐discharge cycles and capacities are in the range 50–80 mA h g?1 at 0.5 C.  相似文献   

12.
Protein glycosylation involves the addition of monosaccharides in a stepwise process requiring no glycan template. Therefore, identifying the numerous glycoforms, including isomers, can help elucidate the biological function(s) of particular glycans. A method to assess the diversity of the N‐linked oligosaccharides released from human serum without derivatization has been developed using on‐line nanoLC and high resolution TOF MS. The N‐linked oligosaccharides were analyzed with MALDI FT‐ICR MS and microchip LC MS (HPLC–Chip/TOF MS). Two microfluidic chips were employed, the glycan chip (40 nL enrichment column, 43×0.075 mm2 i.d. analytical column) and the high capacity chip (160 nL enrichment column, 140×0.075 mm2 i.d. analytical column), both with graphitized carbon as the stationary phase. Both chips offered good sensitivity and reproducibility in separating a heterogeneous mixture of neutral and anionic oligosaccharides between injections. Increasing the length and volume of the enrichment and the analytical columns improved resolution of the peaks. Complex type N‐linked oligosaccharides were the most abundant oligosaccharides in human serum accounting for ∼96% of the total glycans identified, while hybrid and high mannose type oligosaccharides comprise the remaining ∼4%.  相似文献   

13.
The results of studies on possible effects of radiofrequency electromagnetic fields (RF‐EMFs) on human waking electroencephalography (EEG) have been quite heterogeneous. In the majority of studies, changes in the alpha‐frequency range in subjects who were exposed to different signals of mobile phone‐related EMF sources were observed, whereas other studies did not report any effects. In this review, possible reasons for these inconsistencies are presented and recommendations for future waking EEG studies are made. The physiological basis of underlying brain activity, and the technical requirements and framework conditions for conducting and analyzing the human resting‐state EEG are discussed. Peer‐reviewed articles on possible effects of EMF on waking EEG were evaluated with regard to non‐exposure‐related confounding factors. Recommendations derived from international guidelines on the analysis and reporting of findings are proposed to achieve comparability in future studies. In total, 22 peer‐reviewed studies on possible RF‐EMF effects on human resting‐state EEG were analyzed. EEG power in the alpha frequency range was reported to be increased in 10, decreased in four, and not affected in eight studies. All reviewed studies differ in several ways in terms of the methodologies applied, which might contribute to different results and conclusions about the impact of EMF on human resting‐state EEG. A discussion of various study protocols and different outcome parameters prevents a scientifically sound statement on the impact of RF‐EMF on human brain activity in resting‐state EEG. Further studies which apply comparable, standardized study protocols are recommended. Bioelectromagnetics. 2019;40:291–318. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

14.
15.
Introduction – The aerial part Eupatorium lindleyanum is commonly used as an antipyretic and detoxicant clinically in traditional Chinese medicine. Our previous research showed that germacrane sesquiterpene lactones were its main active constituents, so the development of rapid and accurate methods for the identification of the sesquiterpene lactones is of great significance. Objective – To develop an HPLC‐PDA‐ESI‐MS/MS method capable for simple and rapid analysis of germacrane sesquiterpene lactones in the aerial part E. lindleyanum. Methodology – High‐performance liquid chromatography‐photodiode array detection‐electrospray ionization‐tandem mass spectrometry was used to analyze germacrane sesquiterpene lactones of Eupatorium lindleyanum. The fragmentation behavior of germacrane sesquiterpene lactones in a Micromass Q/TOF Mass Spectrometer was discussed, and 9 germacrane sesquiterpene lactones were identified by comparison of their characteristic data of HPLC and MS analyses with those obtained from reference compounds. Results – The investigated germacrane sesquiterpene lactones were identified as eupalinolides C (1), 3β‐acetoxy‐8β‐(4′‐hydroxy‐tigloyloxy)‐14‐hydroxy‐costunolide (2), eupalinolides A (3), eupalinolides B (4), eupalinolides E (5), 3β‐acetoxy‐8β‐(4′‐oxo‐tigloyloxy)‐14‐hydroxy‐heliangolide (6), 3β‐acetoxy‐8β‐(4′‐oxo‐ tigloyloxy)‐14‐hydroxy‐costunolide (7), hiyodorilactone B (8), and 3β‐acetoxy‐8β‐(4′‐hydroxy‐tigloyloxy)‐ costunolide (9). Compounds 6, 7 and 9 were reported for the first time. Conclusion – HPLC‐PDA‐ESI‐MS/MS provides a new powerful approach to identify germacrane sesquiterpene lactones in E. lindleyanum rapidly and accurately. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
The open‐circuit voltage of a triboelectric nanogenerator (TENG) increases with the tribo‐charge density and the separated distance between two tribo‐surfaces, which can reach several thousand volts and is much higher than the working voltage required by most electrical devices and energy storage units. Therefore, improving the effective efficiency of TENGs requires reducing the output voltage and enhancing the transferred charges. Here, a multilayered‐electrode‐based TENG (ME‐TENG) is developed in which the output voltage can be managed by controlling the charge flow in a process of multiple (N) steps, which results in N times lower voltage but N times higher total charge transport. The ME‐TENG is demonstrated to work in various modes, including multichannel, single‐channel, and double‐tribo‐surface structures. The effects of insulator layer thickness and total layer number on the output voltage are simulated by the finite element method. The output voltage can be modulated from 14 to 102 V by changing the insulator layer number between two adjacent working electrodes, based on which the 8‐bit logic representations of the characters in the ACSII code table are demonstrated. The ME‐TENG provides a novel method to manage the output power and has potential applications in self‐powered sensors array and human–machine interfacing with logic communications.  相似文献   

18.
The rapid development of personal electronics imposes a great challenge on sustainable and maintenance‐free power supplies. The integration of nanogenerators (NG) and electrochromic supercapacitors (SC) offers a promising solution to efficiently convert mechanical energy to stored electrical energy in a predictable and noticeable manner. In this paper, by integrating hybrid NGs and electrochromic micro‐SCs (µ‐SCs) array, the authors demonstrate a smart self‐charging power package capable of indicating the charging state with color change. The electrochromic µ‐SC employs Ag nanowires/NiO as electrode materials, exhibiting high capacitance (3.47 mF cm?2) and stable cycling performance (80.7% for 10000 cycles). The hybrid NG can produce a high output voltage of 150 V and an enhanced output current of 20 µA to satisfy the self‐charging requirements. The integrated electrochromic µ‐SCs array is capable of self‐charging to 3 V to light up a LED under human palm impact. The charging states can be estimated according to the color differences with the naked eye during the self‐charging process. Moreover, it is possible to design the planar interdigitated electrodes into different shapes according to user demand. The proposed simple and cost‐effective approaches for smart self‐charging power package may pave the way for future intelligent, independent and continuous operation of daily electronics.  相似文献   

19.
To measure single‐cell microbial activity and substrate utilization patterns in environmental systems, we employ a new technique using stable isotope labelling of microbial populations with heavy water (a passive tracer) and 15N ammonium in combination with multi‐isotope imaging mass spectrometry. We demonstrate simultaneous NanoSIMS analysis of hydrogen, carbon and nitrogen at high spatial and mass resolution, and report calibration data linking single‐cell isotopic compositions to the corresponding bulk isotopic equivalents for Pseudomonas aeruginosa and Staphylococcus aureus. Our results show that heavy water is capable of quantifying in situ single‐cell microbial activities ranging from generational time scales of minutes to years, with only light isotopic incorporation (~0.1 atom % 2H). Applying this approach to study the rates of fatty acid biosynthesis by single cells of S. aureus growing at different rates in chemostat culture (~6 h, 1 day and 2 week generation times), we observe the greatest anabolic activity diversity in the slowest growing populations. By using heavy water to constrain cellular growth activity, we can further infer the relative contributions of ammonium versus amino acid assimilation to the cellular nitrogen pool. The approach described here can be applied to disentangle individual cell activities even in nutritionally complex environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号