首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
Summary The two‐stage case–control design has been widely used in epidemiology studies for its cost‐effectiveness and improvement of the study efficiency ( White, 1982 , American Journal of Epidemiology 115, 119–128; Breslow and Cain, 1988 , Biometrika 75, 11–20). The evolution of modern biomedical studies has called for cost‐effective designs with a continuous outcome and exposure variables. In this article, we propose a new two‐stage outcome‐dependent sampling (ODS) scheme with a continuous outcome variable, where both the first‐stage data and the second‐stage data are from ODS schemes. We develop a semiparametric empirical likelihood estimation for inference about the regression parameters in the proposed design. Simulation studies were conducted to investigate the small‐sample behavior of the proposed estimator. We demonstrate that, for a given statistical power, the proposed design will require a substantially smaller sample size than the alternative designs. The proposed method is illustrated with an environmental health study conducted at National Institutes of Health.  相似文献   

3.
Summary A two‐stage design is cost‐effective for genome‐wide association studies (GWAS) testing hundreds of thousands of single nucleotide polymorphisms (SNPs). In this design, each SNP is genotyped in stage 1 using a fraction of case–control samples. Top‐ranked SNPs are selected and genotyped in stage 2 using additional samples. A joint analysis, combining statistics from both stages, is applied in the second stage. Follow‐up studies can be regarded as a two‐stage design. Once some potential SNPs are identified, independent samples are further genotyped and analyzed separately or jointly with previous data to confirm the findings. When the underlying genetic model is known, an asymptotically optimal trend test (TT) can be used at each analysis. In practice, however, genetic models for SNPs with true associations are usually unknown. In this case, the existing methods for analysis of the two‐stage design and follow‐up studies are not robust across different genetic models. We propose a simple robust procedure with genetic model selection to the two‐stage GWAS. Our results show that, if the optimal TT has about 80% power when the genetic model is known, then the existing methods for analysis of the two‐stage design have minimum powers about 20% across the four common genetic models (when the true model is unknown), while our robust procedure has minimum powers about 70% across the same genetic models. The results can be also applied to follow‐up and replication studies with a joint analysis.  相似文献   

4.
A multiple parametric test procedure is proposed, which considers tests of means of several variables. The single variables or subsets of variables are ordered according to a data‐dependent criterion and tested in this succession without alpha‐adjustment until the first non‐significant test. The test procedure needs the assumption of a multivariate normal distribution and utilizes the theory of spherical distributions. The basic version is particularly suited for variables with approximately equal variances. As a typical example, the procedure is applied to gene expression data from a commercial array.  相似文献   

5.
Adaptive two‐stage designs allow a data‐driven change of design characteristics during the ongoing trial. One of the available options is an adaptive choice of the test statistic for the second stage of the trial based on the results of the interim analysis. Since there is often only a vague knowledge of the distribution shape of the primary endpoint in the planning phase of a study, a change of the test statistic may then be considered if the data indicate that the assumptions underlying the initial choice of the test are not correct. Collings and Hamilton proposed a bootstrap method for the estimation of the power of the two‐sample Wilcoxon test for shift alternatives. We use this approach for the selection of the test statistic. By means of a simulation study, we show that the gain in terms of power may be considerable when the initial assumption about the underlying distribution was wrong, whereas the loss is relatively small when in the first instance the optimal test statistic was chosen. The results also hold true for comparison with a one‐stage design. Application of the method is illustrated by a clinical trial example.  相似文献   

6.
Paired data arises in a wide variety of applications where often the underlying distribution of the paired differences is unknown. When the differences are normally distributed, the t‐test is optimum. On the other hand, if the differences are not normal, the t‐test can have substantially less power than the appropriate optimum test, which depends on the unknown distribution. In textbooks, when the normality of the differences is questionable, typically the non‐parametric Wilcoxon signed rank test is suggested. An adaptive procedure that uses the Shapiro‐Wilk test of normality to decide whether to use the t‐test or the Wilcoxon signed rank test has been employed in several studies. Faced with data from heavy tails, the U.S. Environmental Protection Agency (EPA) introduced another approach: it applies both the sign and t‐tests to the paired differences, the alternative hypothesis is accepted if either test is significant. This paper investigates the statistical properties of a currently used adaptive test, the EPA's method and suggests an alternative technique. The new procedure is easy to use and generally has higher empirical power, especially when the differences are heavy‐tailed, than currently used methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号