首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the estimation of population mean a class of estimators has been proposed when the coefficient of variation is known and its efficiency is compared with the usual unbiased estimator and the estimators suggested by various researchers. The properties of the proposed class of estimators have been also discussed in the case of normal population.  相似文献   

2.
A modified estimator of heritability is proposed under heteroscedastic one way unbalanced random model. The distribution, moments and probability of permissible values (PPV) for conventional and modified estimators are derived. The behaviour of two estimators has been investigated, numerically, to devise a suitable estimator of heritability under variance heterogeneity. The numerical results reveal that under balanced case the heteroscedasticity affects the bias, MSE and PPV of conventional estimator, marginally. In case of unbalanced situations, the conventional estimator underestimates the parameter when more variable group has more observations and overestimates when more variable group has less observations, MSE of the conventional estimator decreases when more variable group has more observations and increases when more variable group has less observations and PPV is marginally decreased. The MSE and PPV are comparable for two estimators while the bias of modified estimator is less than the conventional estimator particularly for small and medium values of the parameter. These results suggest the use of modified estimator with equal or more observations for more variable group in presence of variance heterogeneity.  相似文献   

3.
In the capture‐recapture problem for two independent samples, the traditional estimator, calculated as the product of the two sample sizes divided by the number of sampled subjects appearing commonly in both samples, is well known to be a biased estimator of the population size and have no finite variance under direct or binomial sampling. To alleviate these theoretical limitations, the inverse sampling, in which we continue sampling subjects in the second sample until we obtain a desired number of marked subjects who appeared in the first sample, has been proposed elsewhere. In this paper, we consider five interval estimators of the population size, including the most commonly‐used interval estimator using Wald's statistic, the interval estimator using the logarithmic transformation, the interval estimator derived from a quadratic equation developed here, the interval estimator using the χ2‐approximation, and the interval estimator based on the exact negative binomial distribution. To evaluate and compare the finite sample performance of these estimators, we employ Monte Carlo simulation to calculate the coverage probability and the standardized average length of the resulting confidence intervals in a variety of situations. To study the location of these interval estimators, we calculate the non‐coverage probability in the two tails of the confidence intervals. Finally, we briefly discuss the optimal sample size determination for a given precision to minimize the expected total cost. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Beaumont  Jean-Francois 《Biometrika》2008,95(3):539-553
The validity of design-based inference is not dependent on anymodel assumption. However, it is well known that estimatorsderived through design-based theory may be inefficient for theestimation of population totals when the design weights areweakly related to the variables of interest and have widelydispersed values. We propose estimators that have the potentialto improve the efficiency of any estimator derived under thedesign-based theory. Our main focus is limited to the improvementof the Horvitz–Thompson estimator, but we also discussthe extension to calibration estimators. The new estimatorsare obtained by smoothing design or calibration weights usingan appropriate model. Our approach to inference requires themodelling of only one variable, the weight, and it leads toa single set of smoothed weights in multipurpose surveys. Thisis to be contrasted with other model-based approaches, suchas the prediction approach, in which it is necessary to postulateand validate a model for each variable of interest leading potentiallyto variable-specific sets of weights. Our proposed approachis first justified theoretically and then evaluated througha simulation study.  相似文献   

5.
For estimating the finite population mean of the study variable y, we propose a ratio‐type estimator which gives an improvement over estimators given by Upadhyaya and Singh (1999), Sisodia and Dwivedi (1981), and Singh and Kakran (1993). These estimators are compared by observing the bias and mean square error (MSE). In this empirical study, the suggested estimator under the optimal condition is found to be more efficient than the estimators mentioned above.  相似文献   

6.
Maximum-likelihood estimation of relatedness   总被引:8,自引:0,他引:8  
Milligan BG 《Genetics》2003,163(3):1153-1167
Relatedness between individuals is central to many studies in genetics and population biology. A variety of estimators have been developed to enable molecular marker data to quantify relatedness. Despite this, no effort has been given to characterize the traditional maximum-likelihood estimator in relation to the remainder. This article quantifies its statistical performance under a range of biologically relevant sampling conditions. Under the same range of conditions, the statistical performance of five other commonly used estimators of relatedness is quantified. Comparison among these estimators indicates that the traditional maximum-likelihood estimator exhibits a lower standard error under essentially all conditions. Only for very large amounts of genetic information do most of the other estimators approach the likelihood estimator. However, the likelihood estimator is more biased than any of the others, especially when the amount of genetic information is low or the actual relationship being estimated is near the boundary of the parameter space. Even under these conditions, the amount of bias can be greatly reduced, potentially to biologically irrelevant levels, with suitable genetic sampling. Additionally, the likelihood estimator generally exhibits the lowest root mean-square error, an indication that the bias in fact is quite small. Alternative estimators restricted to yield only biologically interpretable estimates exhibit lower standard errors and greater bias than do unrestricted ones, but generally do not improve over the maximum-likelihood estimator and in some cases exhibit even greater bias. Although some nonlikelihood estimators exhibit better performance with respect to specific metrics under some conditions, none approach the high level of performance exhibited by the likelihood estimator across all conditions and all metrics of performance.  相似文献   

7.
The problem of estimating the population mean using an auxiliary information has been dealt with in literature quite extensively. Ratio, product, linear regression and ratio-type estimators are well known. A class of ratio-cum-product-type estimator is proposed in this paper. Its bias and variance to the first order of approximation are obtained. For an appropriate weight ‘a’ and good range of α-values, it is found that the proposed estimator is superior than a set of estimators (i.e., sample mean, usual ratio and product estimators, SRIVASTAVA's (1967) estimator, CHAKRABARTY's (1979) estimator and a product-type estimator) which are, in fact, the particular cases of it. At optimum value of α, the proposed estimator is as efficient as linear regression estimator.  相似文献   

8.
Jinliang Wang 《Molecular ecology》2016,25(19):4692-4711
In molecular ecology and conservation genetics studies, the important parameter of effective population size (Ne) is increasingly estimated from a single sample of individuals taken at random from a population and genotyped at a number of marker loci. Several estimators are developed, based on the information of linkage disequilibrium (LD), heterozygote excess (HE), molecular coancestry (MC) and sibship frequency (SF) in marker data. The most popular is the LD estimator, because it is more accurate than HE and MC estimators and is simpler to calculate than SF estimator. However, little is known about the accuracy of LD estimator relative to that of SF and about the robustness of all single‐sample estimators when some simplifying assumptions (e.g. random mating, no linkage, no genotyping errors) are violated. This study fills the gaps and uses extensive simulations to compare the biases and accuracies of the four estimators for different population properties (e.g. bottlenecks, nonrandom mating, haplodiploid), marker properties (e.g. linkage, polymorphisms) and sample properties (e.g. numbers of individuals and markers) and to compare the robustness of the four estimators when marker data are imperfect (with allelic dropouts). Extensive simulations show that SF estimator is more accurate, has a much wider application scope (e.g. suitable to nonrandom mating such as selfing, haplodiploid species, dominant markers) and is more robust (e.g. to the presence of linkage and genotyping errors of markers) than the other estimators. An empirical data set from a Yellowstone grizzly bear population was analysed to demonstrate the use of the SF estimator in practice.  相似文献   

9.
For the estimation of population mean in simple random sampling, an efficient regression-type estimator is proposed which is more efficient than the conventional regression estimator and hence than mean per unit estimator, ratio and product estimators and many other estimators proposed by various authors. Some numerical examples are included for illustration.  相似文献   

10.
This paper continues work presented in B?hning et al. (2002b, Annals of the Institute of Statistical Mathematics 54, 827-839, henceforth BMSRB) where a class of non-iterative estimators of the variance of the heterogeneity distribution for the standardized mortality ratio was discussed. Here, these estimators are further investigated by means of a simulation study. In addition, iterative estimators including the Clayton-Kaldor procedure as well as the pseudo-maximum-likelihood (PML) approach are added in the comparison. Among all candidates, the PML estimator often has the smallest mean square error, followed by the non-iterative estimator where the weights are proportional to the external expected counts. This confirms the theoretical result in BMSRB in which an asymptotic efficiency could be proved for this estimator (in the class of non-iterative estimators considered). Surprisingly, the Clayton-Kaldor iterative estimator (often recommended and used by practitioners) performed poorly with respect to the MSE. Given the widespread use of these estimators in disease mapping, medical surveillance, meta-analysis and other areas of public health, the results of this study might be of considerable interest.  相似文献   

11.
Molecular marker data provide a means of circumventing the problem of not knowing the population structure of a natural population, as observed similarities between a pair's genotypes provide information on their genetic relationship. Numerous method-of-moment (MOM) estimators have been developed for estimating relationship coefficients using this information. Here, I present a simplified form of Wang's 2002 relationship estimator that is not dependent upon a previously required weighting scheme, thus improving the efficiency of the estimator when used with genuinely related pairs. The new estimator is compared against other estimators under a range of conditions, including situations where the parameter estimates are truncated to lie within the legitimate parameter space. The advantages of the new estimator are most notable for the two-gene coefficient of relatedness. Truncating the MOM estimators results in parameter estimates whose properties are similar to maximum likelihood estimates, with them having generally lower sampling variances, but being biased.  相似文献   

12.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

13.
Estimation of a common effect parameter from sparse follow-up data   总被引:30,自引:0,他引:30  
Breslow (1981, Biometrika 68, 73-84) has shown that the Mantel-Haenszel odds ratio is a consistent estimator of a common odds ratio in sparse stratifications. For cohort studies, however, estimation of a common risk ratio or risk difference can be of greater interest. Under a binomial sparse-data model, the Mantel-Haenszel risk ratio and risk difference estimators are consistent in sparse stratifications, while the maximum likelihood and weighted least squares estimators are biased. Under Poisson sparse-data models, the Mantel-Haenszel and maximum likelihood rate ratio estimators have equal asymptotic variances under the null hypothesis and are consistent, while the weighted least squares estimators are again biased; similarly, of the common rate difference estimators the weighted least squares estimators are biased, while the estimator employing "Mantel-Haenszel" weights is consistent in sparse data. Variance estimators that are consistent in both sparse data and large strata can be derived for all the Mantel-Haenszel estimators.  相似文献   

14.
Tallmon DA  Luikart G  Beaumont MA 《Genetics》2004,167(2):977-988
We describe and evaluate a new estimator of the effective population size (N(e)), a critical parameter in evolutionary and conservation biology. This new "SummStat" N(e) estimator is based upon the use of summary statistics in an approximate Bayesian computation framework to infer N(e). Simulations of a Wright-Fisher population with known N(e) show that the SummStat estimator is useful across a realistic range of individuals and loci sampled, generations between samples, and N(e) values. We also address the paucity of information about the relative performance of N(e) estimators by comparing the SummStat estimator to two recently developed likelihood-based estimators and a traditional moment-based estimator. The SummStat estimator is the least biased of the four estimators compared. In 32 of 36 parameter combinations investigated using initial allele frequencies drawn from a Dirichlet distribution, it has the lowest bias. The relative mean square error (RMSE) of the SummStat estimator was generally intermediate to the others. All of the estimators had RMSE > 1 when small samples (n = 20, five loci) were collected a generation apart. In contrast, when samples were separated by three or more generations and N(e) < or = 50, the SummStat and likelihood-based estimators all had greatly reduced RMSE. Under the conditions simulated, SummStat confidence intervals were more conservative than the likelihood-based estimators and more likely to include true N(e). The greatest strength of the SummStat estimator is its flexible structure. This flexibility allows it to incorporate any potentially informative summary statistic from population genetic data.  相似文献   

15.
In sample surveys, it is usual to make use of auxiliary information to increase the precision of the estimators. We propose a new chain ratio estimator and regression estimator of a finite population mean using linear combination of two auxiliary variables and obtain the mean squared error (MSE) equations for the proposed estimators. We find theoretical conditions that make proposed estimators more efficient than the traditional multivariate ratio estimator and the regression estimator using information of two auxiliary variables.  相似文献   

16.
In follow‐up studies, the disease event time can be subject to left truncation and right censoring. Furthermore, medical advancements have made it possible for patients to be cured of certain types of diseases. In this article, we consider a semiparametric mixture cure model for the regression analysis of left‐truncated and right‐censored data. The model combines a logistic regression for the probability of event occurrence with the class of transformation models for the time of occurrence. We investigate two techniques for estimating model parameters. The first approach is based on martingale estimating equations (EEs). The second approach is based on the conditional likelihood function given truncation variables. The asymptotic properties of both proposed estimators are established. Simulation studies indicate that the conditional maximum‐likelihood estimator (cMLE) performs well while the estimator based on EEs is very unstable even though it is shown to be consistent. This is a special and intriguing phenomenon for the EE approach under cure model. We provide insights into this issue and find that the EE approach can be improved significantly by assigning appropriate weights to the censored observations in the EEs. This finding is useful in overcoming the instability of the EE approach in some more complicated situations, where the likelihood approach is not feasible. We illustrate the proposed estimation procedures by analyzing the age at onset of the occiput‐wall distance event for patients with ankylosing spondylitis.  相似文献   

17.
Little attention has been paid to the use of multi‐sample batch‐marking studies, as it is generally assumed that an individual's capture history is necessary for fully efficient estimates. However, recently, Huggins et al. ( 2010 ) present a pseudo‐likelihood for a multi‐sample batch‐marking study where they used estimating equations to solve for survival and capture probabilities and then derived abundance estimates using a Horvitz–Thompson‐type estimator. We have developed and maximized the likelihood for batch‐marking studies. We use data simulated from a Jolly–Seber‐type study and convert this to what would have been obtained from an extended batch‐marking study. We compare our abundance estimates obtained from the Crosbie–Manly–Arnason–Schwarz (CMAS) model with those of the extended batch‐marking model to determine the efficiency of collecting and analyzing batch‐marking data. We found that estimates of abundance were similar for all three estimators: CMAS, Huggins, and our likelihood. Gains are made when using unique identifiers and employing the CMAS model in terms of precision; however, the likelihood typically had lower mean square error than the pseudo‐likelihood method of Huggins et al. ( 2010 ). When faced with designing a batch‐marking study, researchers can be confident in obtaining unbiased abundance estimators. Furthermore, they can design studies in order to reduce mean square error by manipulating capture probabilities and sample size.  相似文献   

18.
In this paper properties of an estimator of the population mean on current occasion under successive sampling scheme, when various weights (φh'S) and regression coefficients (βh,h-1) are estimated for h ≥ 2, have been studied. Some empirical results on the estimation of the variance of an unbiased estimator of population mean for h = 2 are also given.  相似文献   

19.
The estimation of the values of a variable at any point of a study area is performed using Bernstein polynomials when the sampling scheme is implemented by selecting a point in each polygon of a regular grid overimposed onto the area. The evaluation of the precision of the resulting estimates is investigated under a completely design‐based framework. Moreover, as the main contribution to the mean squared error of the Bernstein‐type estimator is due to the bias, also a pseudo‐jackknife estimator is proposed. The performance of both estimators is investigated theoretically and by means of a simulation study. An application to a soil survey performed in Berkshire Downs in Oxfordshire (UK) is considered.  相似文献   

20.
For estimating finite population variance σy2 of a character y under our study, estimators using auxiliary information on a character x in the form of ratio, product, ratio-type or product-type estimators have been suggested, and their comparative study with the conventional unbiased estimator sy2 of σy2 has been made in simple random sampling with replacement. A generalized estimator representing a class of estimators for the finite populations variance, has also been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号