首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Owing to the exponential growth of genome databases, phylogenetic trees are now widely used to test a variety of evolutionary hypotheses. Nevertheless, computation time burden limits the application of methods such as maximum likelihood nonparametric bootstrap to assess reliability of evolutionary trees. As an alternative, the much faster Bayesian inference of phylogeny, which expresses branch support as posterior probabilities, has been introduced. However, marked discrepancies exist between nonparametric bootstrap proportions and Bayesian posterior probabilities, leading to difficulties in the interpretation of sometimes strongly conflicting results. As an attempt to reconcile these two indices of node reliability, we apply the nonparametric bootstrap resampling procedure to the Bayesian approach. The correlation between posterior probabilities, bootstrap maximum likelihood percentages, and bootstrapped posterior probabilities was studied for eight highly diverse empirical data sets and were also investigated using experimental simulation. Our results show that the relation between posterior probabilities and bootstrapped maximum likelihood percentages is highly variable but that very strong correlations always exist when Bayesian node support is estimated on bootstrapped character matrices. Moreover, simulations corroborate empirical observations in suggesting that, being more conservative, the bootstrap approach might be less prone to strongly supporting a false phylogenetic hypothesis. Thus, apparent conflicts in topology recovered by the Bayesian approach were reduced after bootstrapping. Both posterior probabilities and bootstrap supports are of great interest to phylogeny as potential upper and lower bounds of node reliability, but they are surely not interchangeable and cannot be directly compared.  相似文献   

3.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.  相似文献   

4.
本文讨论了有限MapkoB链可跳的条件,并用矩阵乘法的运算证明了这些条件.  相似文献   

5.
Blackwell  P. G. 《Biometrika》2003,90(3):613-627
  相似文献   

6.
Adaptive sampling for Bayesian variable selection   总被引:1,自引:0,他引:1  
Nott  David J.; Kohn  Robert 《Biometrika》2005,92(4):747-763
  相似文献   

7.
Neural networks are considered by many to be very promising tools for classification and prediction. The flexibility of the neural network models often result in over-fit. Shrinking the parameters using a penalized likelihood is often used in order to overcome such over-fit. In this paper we extend the approach proposed by FARAGGI and SIMON (1995a) to modeling censored survival data using the input-output relationship associated with a single hidden layer feed-forward neural network. Instead of estimating the neural network parameters using the method of maximum likelihood, we place normal prior distributions on the parameters and make inferences based on derived posterior distributions of the parameters. This Bayesian formulation will result in shrinking the parameters of the neural network model and will reduce the over-fit compared with the maximum likelihood estimators. We illustrate our proposed method on a simulated and a real example.  相似文献   

8.
Recent Bayesian methods for the analysis of infectious disease outbreak data using stochastic epidemic models are reviewed. These methods rely on Markov chain Monte Carlo methods. Both temporal and non-temporal data are considered. The methods are illustrated with a number of examples featuring different models and datasets.  相似文献   

9.
10.
11.
This article presents a statistical method for detecting recombination in DNA sequence alignments, which is based on combining two probabilistic graphical models: (1) a taxon graph (phylogenetic tree) representing the relationship between the taxa, and (2) a site graph (hidden Markov model) representing interactions between different sites in the DNA sequence alignments. We adopt a Bayesian approach and sample the parameters of the model from the posterior distribution with Markov chain Monte Carlo, using a Metropolis-Hastings and Gibbs-within-Gibbs scheme. The proposed method is tested on various synthetic and real-world DNA sequence alignments, and we compare its performance with the established detection methods RECPARS, PLATO, and TOPAL, as well as with two alternative parameter estimation schemes.  相似文献   

12.
利用马尔柯夫过程预测东陵区土地利用格局的变化   总被引:113,自引:10,他引:113  
徐岚  赵羿 《应用生态学报》1993,4(3):272-277
根据沈阳市东陵区3个时期遥感航片和地形图获得的土地利用类型数据,成功地确定了土地利用类型的转移概率,并用马氏链模型预测了该区土地利用类型变化趋势。结果表明,当前该区的土地利用格局正处于一种耕地逐渐减少,居民点工矿用地逐渐增加的变化状态,而且这种变化将持续很长时间,最后将达到以旱地20.66%、水田28.41%、居民点工矿用地37.42%、菜地6.15%、林地4.36%等为主要土地利用类型的稳定状态,形成一个城乡结合的新的土地利用格局。  相似文献   

13.
An improved Markov chain model has been developed for forecasting of sugarcane yields in which growth indices of biometrical characters based on data from two stages simultaneously have been utilised. Comparisons were also made with the models in use viz. the regression model and the first order Markov chain model.  相似文献   

14.
In protein-coding DNA sequences, historical patterns of selection can be inferred from amino acid substitution patterns. High relative rates of nonsynonymous to synonymous changes (=d N /d S ) are a clear indicator of positive, or directional, selection, and several recently developed methods attempt to distinguish these sites from those under neutral or purifying selection. One method uses an empirical Bayesian framework that accounts for varying selective pressures across sites while conditioning on the parameters of the model of DNA evolution and on the phylogenetic history. We describe a method that identifies sites under diversifying selection using a fully Bayesian framework. Similar to earlier work, the method presented here allows the rate of nonsynonymous to synonymous changes to vary among sites. The significant difference in using a fully Bayesian approach lies in our ability to account for uncertainty in parameters including the tree topology, branch lengths, and the codon model of DNA substitution. We demonstrate the utility of the fully Bayesian approach by applying our method to a data set of the vertebrate -globin gene. Compared to a previous analysis of this data set, the hierarchical model found most of the same sites to be in the positive selection class, but with a few striking exceptions.  相似文献   

15.
The amino acid sequences of proteins provide rich information for inferring distant phylogenetic relationships and for predicting protein functions. Estimating the rate matrix of residue substitutions from amino acid sequences is also important because the rate matrix can be used to develop scoring matrices for sequence alignment. Here we use a continuous time Markov process to model the substitution rates of residues and develop a Bayesian Markov chain Monte Carlo method for rate estimation. We validate our method using simulated artificial protein sequences. Because different local regions such as binding surfaces and the protein interior core experience different selection pressures due to functional or stability constraints, we use our method to estimate the substitution rates of local regions. Our results show that the substitution rates are very different for residues in the buried core and residues on the solvent-exposed surfaces. In addition, the rest of the proteins on the binding surfaces also have very different substitution rates from residues. Based on these findings, we further develop a method for protein function prediction by surface matching using scoring matrices derived from estimated substitution rates for residues located on the binding surfaces. We show with examples that our method is effective in identifying functionally related proteins that have overall low sequence identity, a task known to be very challenging.  相似文献   

16.
A Bayesian approach to analysing data from family-based association studies is developed. This permits direct assessment of the range of possible values of model parameters, such as the recombination frequency and allelic associations, in the light of the data. In addition, sophisticated comparisons of different models may be handled easily, even when such models are not nested. The methodology is developed in such a way as to allow separate inferences to be made about linkage and association by including theta, the recombination fraction between the marker and disease susceptibility locus under study, explicitly in the model. The method is illustrated by application to a previously published data set. The data analysis raises some interesting issues, notably with regard to the weight of evidence necessary to convince us of linkage between a candidate locus and disease.  相似文献   

17.
A Bayesian CART algorithm   总被引:3,自引:0,他引:3  
  相似文献   

18.
In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.  相似文献   

19.
Models of amino acid substitution present challenges beyond those often faced with the analysis of DNA sequences. The alignments of amino acid sequences are often small, whereas the number of parameters to be estimated is potentially large when compared with the number of free parameters for nucleotide substitution models. Most approaches to the analysis of amino acid alignments have focused on the use of fixed amino acid models in which all of the potentially free parameters are fixed to values estimated from a large number of sequences. Often, these fixed amino acid models are specific to a gene or taxonomic group (e.g. the Mtmam model, which has parameters that are specific to mammalian mitochondrial gene sequences). Although the fixed amino acid models succeed in reducing the number of free parameters to be estimated--indeed, they reduce the number of free parameters from approximately 200 to 0--it is possible that none of the currently available fixed amino acid models is appropriate for a specific alignment. Here, we present four approaches to the analysis of amino acid sequences. First, we explore the use of a general time reversible model of amino acid substitution using a Dirichlet prior probability distribution on the 190 exchangeability parameters. Second, we then explore the behaviour of prior probability distributions that are'centred' on the rates specified by the fixed amino acid model. Third, we consider a mixture of fixed amino acid models. Finally, we consider constraints on the exchangeability parameters as partitions,similar to how nucleotide substitution models are specified, and place a Dirichlet process prior model on all the possible partitioning schemes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号