首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the vertebrate peripheral nervous system, the proneural genes neurogenin 1 and neurogenin 2 (Ngn1 and Ngn2), and Mash1 are required for sensory and autonomic neurogenesis, respectively. In cultures of neural tube-derived, primitive PNS progenitors NGNs promote expression of sensory markers and MASH1 that of autonomic markers. These effects do not simply reflect enhanced neuronal differentiation, suggesting that both bHLH factors also specify neuronal identity like their Drosophila counterparts. At high concentrations of BMP2 or in neural crest stem cells (NCSCs), however, NGNs like MASH1 promote only autonomic marker expression. These data suggest that that the identity specification function of NGNs is more sensitive to context than is that of MASH1. In NCSCs, MASH1 is more sensitive to Notch-mediated inhibition of neurogenesis and cell cycle arrest, than are the NGNs. Thus, the two proneural genes differ in other functional properties besides the neuron subtype identities they can promote. These properties may explain cellular differences between MASH1- and NGN-dependent lineages in the timing of neuronal differentiation and cell cycle exit.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Sensory and sympathetic neurons are generated from the trunk neural crest. The prevailing view has been that these two classes of neurons are derived from a common neural crest-derived progenitor that chooses between neuronal fates only after migrating to sites of peripheral ganglion formation. Here I reconsider this view in the light of new molecular and genetic data on the differentiation of sensory and autonomic neurons. These data raise several paradoxes when taken in the context of classical studies of the timing and spatial patterning of sensory and autonomic ganglion formation. These paradoxes can be most easily resolved by assuming that the restriction of neural crest cells to either sensory or autonomic lineages occurs at a very early stage, either before and/or shortly after they exit the neural tube.  相似文献   

12.
13.
14.
15.
16.
The development of enteric and sympathetic neurons from neural crest precursor cells is regulated by signals produced by the embryonic environments to which the cells migrate. Bone morphogenetic proteins (BMPs) are present in the developing embryo and act to induce neuronal differentiation and noradrenergic properties of neural crest cells. We have investigated the role of BMP2 in regulating the appearance of distinct populations of autonomic neurons from postmigratory, HNK-1-positive neural crest precursor cells. BMP2 promotes neuronal differentiation of sympathetic and enteric precursor cells isolated from E14.5 rat. The effects of BMP2 change over time, resulting in a decrease in neuron number that can be attributed to apoptotic cell death. BMP2-dependent neuron death is rescued by gut-derived factors that provide trophic support to maturing neurons, indicating that BMP2 regulates the acquisition of trophic dependence of developing peripheral neurons. In addition to regulating neuron number, BMP2 promotes both panneuronal maturation and the acquisition of an enteric phenotype, as measured by lineage-specific changes in the expression of tyrosine hydroxylase and MASH-1. While BMP2 is sufficient to induce neuronal differentiation and panneuronal development, these results suggest that additional factors in the environment must collaborate with BMP2 to promote the final noradrenergic phenotype of sympathetic neurons.  相似文献   

17.
18.
19.
20.
Molecular analysis of neural crest formation.   总被引:5,自引:0,他引:5  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号