首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The movement of water accompanying solutes between the cytoplasm and the mitochondrial spaces is central for mitochondrial volume homeostasis, an important function for mitochondrial activities and for preventing the deleterious effects of excess matrix swelling or contraction. While the discovery of aquaporin water channels in the inner mitochondrial membrane provided valuable insights into the basis of mitochondrial plasticity, questions regarding the identity of mitochondrial water permeability and its regulatory mechanism remain open. Here, we use a stopped flow light scattering approach to define the water permeability and Arrhenius activation energy of the rat liver whole intact mitochondrion and its membrane subcompartments. The water permeabilities of whole brain and testis mitochondria as well as liposome models of the lipid bilayer composing the liver inner mitochondrial membrane are also characterized. Besides finding remarkably high water permeabilities for both mitochondria and their membrane subcompartments, the existence of additional pathways of water movement other than aquaporins are suggested.  相似文献   

2.
1. Ionophore-induced osmotic swelling was used to study Cl- transport in isolated rat liver mitochondria. 2. Energy-dependent, neutral ionophore-induced swelling in Cl- salts at pH 7.2 required K+ and was preceded by a brief lag phase that was absent in chlorotributyltin-induced swelling. 3. Treatments that stimulated or inhibited mitochondrial K+/H+ exchange had qualitatively similar effects on both valinomycin-induced swelling and the associated lag phase. 4. The results suggest that valinomycin-induced Cl- permeability results from an interaction between the K+/H+ antiporter and neutral ionophore K+ complexes.  相似文献   

3.
The rates of penetration of various solutes into isolated rat liver mitochondria have been studied. Sodium, potassium, and sucrose were observed to enter the mitochondria until an equilibrium concentration was reached. The diffusion of these solutes, after the first few minutes, followed the predicted diffusion curve for solutes entering a particle with a rate-limiting membrane and instantaneous mixing in the interior. Reasons for deviations from the predicted equation during the first few minutes of diffusion are suggested. The data show that at pH 7.4 sodium and potassium enter more rapidly than sucrose. I131-labelled albumin was found to enter very slowly, if at all. Increasing the pH from 7.4 reduced the rate at which sodium ion penetrated the mitochondria. The rate of diffusion of sucrose into mitochondria was considerably slower than diffusion of sucrose into a sphere of water of the same size. Sodium ion was not found to be concentrated in vitro against an external concentration gradient as has been reported by other investigators. It is concluded that the rate of diffusion of solutes between the external medium and the interior of mitochondria is probably restricted and controlled by a mitochondrial membrane exhibiting passive permeability characteristics.  相似文献   

4.
Heat shock suppresses the permeability transition in rat liver mitochondria   总被引:8,自引:0,他引:8  
Heat shock proteins inhibit apoptotic and necrotic cell death in various cell types. However, the specific mechanism underlying protection by heat shock proteins remains unclear. To test the hypothesis that heat shock proteins inhibit cell death by blocking opening of mitochondrial permeability transition (MPT) pores, mitochondria from heat-preconditioned rat livers were isolated by differential centrifugation. Heat shock inhibited MPT pore opening induced by 50 microm CaCl(2) plus 5 microm HgCl(2) or 1 microm mastoparan and by 200 microm CaCl(2) alone. Half-maximal swelling was delayed 15 min or more after heat shock compared with control. Heat shock also increased the threshold of unregulated (Ca(2+)-independent and cyclosporin A-insensitive) MPT pore opening induced by higher doses of HgCl(2) and mastoparan. Heat shock treatment decreased mitochondrial reactive oxygen species formation by 27% but did not change mitochondrial respiration, membrane potential, Ca(2+) uptake, or total glutathione in mitochondrial and cytosolic extracts of liver. Western blot analysis showed that mitochondrial Hsp25 increased, whereas Hsp10, Hsp60, Hsp70, Hsp75, cyclophilin D, and voltage-dependent anion channel did not change after heat shock. These results indicate that heat shock causes resistance to opening of MPT pores, which may contribute to heat shock protection against cellular injury.  相似文献   

5.
The effect of the polybasic substances Polybrene and spermine on the passive and active transport of monovalent cations in mitochondria was studied. These agents were found to stimulate the low amplitude swelling of mitochondria. Volume oscillations were induced by addition of substrate in the presence of spermine. In conditions where weak oscillations were obtained without these substances, oscillations were stimulated and their frequencies increased in the presence of Polybrene and spermine. Their effects were maximal with 100–300 moles spermine per litre and 3–5 mg Polybrene per litre. These results are discussed in relation to an interaction of the agents studied with membrane negative charges which may be important regulators of ion transport.  相似文献   

6.
7.
The in vitro experiments revealed no incorporation of amino acids into actin-like protein of isolated rat liver mitochondria. The method of pulse label showed the presence of [14C]actin-like protein in mitochondria of intact animals which were not administered cycloheximide. A new synthesized actin-like protein is identified in mitochondria as a labelled polypeptide with apparent molecular weight 42 kDa. The data obtained may evidence for cytoplasmic localization of mitochondrial actin-like protein biosynthesis.  相似文献   

8.
Selenium is an essential trace element in mammals and is thought to play a chemopreventive role in human cancer, possibly by inducing tumor cell apoptosis. Mitochondria play a pivotal role in the induction of apoptosis in many cell types. The effects of selenite on mitochondrial function were therefore investigated. Selenite induced the oxidation and cross-linking of protein thiol groups, mitochondrial permeability transition (MPT), a decrease in the mitochondrial membrane potential, and the release of cytochrome c in mitochondria isolated from rat liver. Induction of the MPT by selenite was prevented by cyclosporin A, EGTA, or N-ethylmaleimide. These results thus indicate that selenite induces the MPT as a result of direct modification of protein thiol groups, resulting in the release of cytochrome c and a loss of mitochondrial membrane potential.  相似文献   

9.
Biological actions of retinoids on modulation of cellular gene expression by nuclear receptors are widely known. Recently, extra-nuclear effects of retinoids have been proposed, but remain to be better elucidated. Considering that retinoids induce apoptosis in tumor cells by an unknown mechanism, and that mitochondria play a key role in controlling apoptosis via cytochrome c (cyt c) release, we exposed rat liver mitochondria to 3-40 microM of retinol (vitamin A), and observed that retinol causes mitochondrial permeability transition (MPT) and cyt c release, in a concentration-dependent pattern. Increased superoxide anion generation and lipoperoxidation were also observed. Cyclosporin A or trolox co-administration reverted all parameters tested. In view of these findings, we conclude that retinol induces mitochondria oxidative damage, leading to MPT and cyt c release by opening of the permeability transition pore, thus suggesting a putative mechanism of apoptosis activation by retinol.  相似文献   

10.
1. A method was devised to allow determination of intramitochondrial aspartate amino-transferase activity in suspensions of intact mitochondria. 2. Addition of purified rat liver mitochondrial aspartate aminotransferase to suspensions of rat liver mitochondria caused an apparent increase in the intramitochondrial enzyme activity. No increase was observed when the mitochondria were preincubated with the purified cytoplasmic isoenzyme. 3. These results suggest that mitochondrial aspartate aminotransferase, but not the cytoplasmic isoenzyme, is able to pass from solution into the matrix of intact rat liver mitochondria in vitro. 4. This system may provide a model for studies of the little-understood processes by which cytoplasmically synthesized components are incorporated into mitochondria in vivo.  相似文献   

11.
It is shown that 2-10 microM Zn2+ induces swelling of rat liver mitochondria incubated in a buffered sucrose medium either with valinomycin or with FCCP, Ca2+, ionophore A23187, oligomycin, and nigericin. This swelling was associated with the release of GSH from mitochondria. Both processes were sensitive to known inhibitors of the mitochondrial permeability transition (MPT), cyclosporin A, and Mg2+. Mitochondrial swelling induced by Zn2+ was also inhibited by rotenone, antymycin A, N-ethylmaleimide, butylhydroxytoluene, and spermine, whereas it was stimulated by tert-butyl hydroperoxide, diamide, and monobromobimane. It did not require the addition of phosphate. The same sensitivity to pH of the mitochondrial swelling induced by Zn2+ and by phenylarsine oxide suggests the same site of the interaction, namely, thiol groups. The ability of Zn2+ to induce mitochondrial swelling gradually decreased along with its increasing concentration above 10 microM. It is concluded that micromolar Zn2+ induces the MPT presumably by the interaction with cysteinyl residues. This process is independent of the mitochondrial membrane potential.  相似文献   

12.
Interactions of methylmercury (CH(3)HgCl) with non-energized mitochondria from rat liver (non-respiring mitochondria) have been investigated in this paper. It has been shown that CH(3)HgCl induces swelling in mitochondria suspended in a sucrose medium. Swelling has also been induced by detergent compounds and by phenylarsine, a chemical compound which induces opening of the permeant transition pore (MTP). Opening of the MTP is inhibited by means of cyclosporine A. Results indicate that the swelling induced by CH(3)HgCl, as in the case of phenylarsine, is inhibited by cyclosporine A and Mg(2+), while swelling induced by detergent compounds is not cyclosporine sensitive. This comparison suggests that CH(3)HgCl induces opening of a permeability transition pore (MTP). Since the opening of an MTP induces cell death, this interaction with MTP could be one of the causes of toxicity of CH(3)HgCl.  相似文献   

13.
This paper reports an investigation on the effects of the hydrophobic, bifunctional SH group reagent phenylarsine oxide (PhAsO) on mitochondrial membrane permeability. We show that PhAsO is a potent inducer of the mitochondrial permeability transition in a process which is sensitive to both the oxygen radical scavanger BHT and to cyclosporin A. The PhAsO-induced permeability transition is stimulated by Ca2+ but takes place also in the presence of EGTA in a process that maintains its sensitivity to BHT and cyclosporin A. Our findings suggest that, at variance from other known inducers of the permeability transition, PhAsO reacts directly with functional SH groups that are inaccessible to hydrophilic reagents in the absence of Ca2+.  相似文献   

14.
15.
16.
The electron microscopic appearance of rat liver mitochondria fixed in glutaraldehyde is altered if certain colloids (serum albumin, dextran or Ficoll) are present in the medium at about 3%. To compare behaviour in control and albumin-supplemented media, the rate of stimulated respiration was measured with various substrates. It was found that the rate of respiration was reduced with succinate or pyruvate and was almost abolished with oxoglutarate, while malate oxidation (in presence of glutamate) was unaffected. The rate of oxoglutarate oxidation could be restored by causing mitochondrial swelling. It is suggested that the effects are due to the presence of endogenous colloids in the particles whose effects on water activity have to be balanced by external colloid. In the absence of external colloid, swelling of the internal colloid-containing compartments may give rise to an enhanced permeability of the membrane so that reactions occurin vitro which do not take place rapidly if at allin vivo.  相似文献   

17.
Alkaline RNase partially purified from rat liver mitochondria hydrolyzes both RNA and denatured DNA. The behaviors of RNase activity of the nuclease are closely similar to those of the DNase activity. The nuclease has a pH optimum between 9.0 and 9.5, and the activity is absolutely dependent on Mg2+ and reversibly inhibited by p-hydroxymercuribenzoate.  相似文献   

18.
1. The mitochondrial malate dehydrogenase from rat liver has been purified to a state of homogeneity as judged by starch-gel electrophoresis and the cytoplasmic isoenzyme has been obtained in a partically purified state. 2. Inhibition of the isoenzymes by sulphite has been studied. 3. In mitochondria loaded with sulphite, the catalytic activity of the (partially inhibited) internal malate dehydrogenase has been measured by addition of oxaloacetate to the suspension medium and observation of the consequent decrease in fluorescence of NADH. 4. Addition of mitochondrial malate dehydrogenase to suspensions of mitochondria loaded with sulphite resulted in an increase in the level of intramitochondrial enzymic activity as measured by the above technique. Addition of the cytoplasmic isoenzyme did not result in such an increase. 5. These results show that mitochondria in suspension are permeable to the mitochondrial malate dehydrogenase but not to the cytoplasmic isoenzyme. 6. This conclusion has been confirmed by direct measurement of a decrease of enzyme activity in solution and an increase inside the mitochondria after incubation of organelles in solutions containing mitochondrial malate dehydrogenase. No such effect was observed with the cytoplasmic isoenzyme. 7. Some features of the permeation process have been studied.  相似文献   

19.
Several reports support the concept that bile acids may be cytotoxic during cholestatic disease process by causing mitochondrial dysfunction. Here we report additional data and findings aimed at a better understanding of the involvement of the permeability transition pore (PTP) opening in bile acids toxicity. The mitochondrial PTP is implicated as a mediator of cell injury and death in many situations. In the presence of calcium and phosphate, chenodeoxycholic acid (CDCA) induced a permeability transition in freshly isolated rat liver mitochondria, characterized by membrane depolarization, release of matrix calcium, and osmotic swelling. All these events were blocked by cyclosporine A (CyA) and the calcium uniporter inhibitor ruthenium red (RR). The results suggest that CDCA increases the sensitivity of isolated mitochondria in vitro to the calcium-dependent induction of the PTP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号