首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of A23187 plus EDTA to rat liver mitochondria induces a common uniport pathway for monovalent cations. In this study, we have carried out a detailed characterization of the flow/force relationship for K+ transport along this pathway under steady state conditions. In the presence of EDTA, the K+ conductance is a linear function of external K+ in the range 0-20 mM K+, with a slope of 0.15 nmol of K+ x mg of protein-1 x min-1 x mV-1. The K+ conductance is inhibited by Mg2+ in the range 10(-9)-10(-6) M, while K+ flux is stimulated by the sulfhydryl group reagent mersalyl. Uniport activity can be detected in native mitochondria. These findings are compatible with the notion that electrophoretic K+ flux across the inner membrane takes place via a regulated K+ uniport with the potential of transporting K+ at rates in excess of 600 nmol x mg of protein-1 x min-1.  相似文献   

2.
The rate of methane formation from H2 and CO2, the intracellular ATP content and the electrochemical proton potential (delta mu H+) were determined in cell suspensions of Methanobacterium thermoautotrophicum, which were permeabilized for K+ with valinomycin (1.2 mumol/mg protein). In the absence of extracellular K+ the cells formed methane at a rate of 4 mumol min-1 (mg protein)-1, the intracellular ATP content was 20 nmol/mg protein and the delta mu H+ was 200 mV (inside negative). When K+ was added to the suspensions the measured delta mu H+ decreased to the value calculated from the [K+]in/[K+]out ratio. Using this method of delta mu H+ adjustment, it was found that lowering delta mu H+ from 200 mV ([K+]in/[K+]out = 1000) to 100 mV ([K+]in/[K+]out = 40) had no effect on the rate of methane formation and on the intracellular ATP content. At delta mu H+ values below 100 mV ([K+]in/[K+]out less than 40) both the rate of methanogenesis and the ATP content decreased. Methanogenesis completely ceased and the ATP content was 2 nmol/mg when delta mu H+ was adjusted to values lower 50 mV ([K+]in/[K+]out less than 7). The data show that methanogenesis from H2 and CO2 and ATP synthesis in M. thermoautotrophicum are possible at relatively low electrochemical proton potentials. Similar results were obtained with Methanosarcina barkeri. Protonophoric uncouplers like 3,5,3',4'-tetrachlorosalicylanilide (TCS) or 3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile (SF 6847) were found not to dissipate delta mu H+ below 100 mV in M. thermoautotrophicum even when used at high concentrations (400 nmol/mg protein). This finding explains the observed uncoupler insensitivity of methanogenesis and ATP synthesis in this organism.  相似文献   

3.
In vesicles from glucose-grown Pseudomonas putida, L-malate is transported by nonspecific physical diffusion. L-Malate also acts as an electron donor and generates a proton motive force (delta p) of 129 mV which is composed of a membrane potential (delta psi) of 60 mV and a delta pH of 69 mV. In contrast, vesicles from succinate-grown cells transport L-malate by a carrier-mediated system with a Km value of 14.3 mM and a Vmax of 313 nmol X mg protein-1 X min-1, generate no delta psi, delta pH, or delta p when L-malate is the electron donor, and produce an extravesicular alkaline pH during the transport of L-malate. A kinetic analysis of this L-malate-induced proton transport gives a Km value of 16 mM and a Vmax of 667 nmol H+ X mg protein-1 X min-1. This corresponds to a H+/L-malate ratio of 2.1. The failure to generate a delta p in these vesicles is considered, therefore, to be consistent with the induction in succinate-grown cells of an electrogenic proton symport L-malate transport system.  相似文献   

4.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

5.
Following on from our previous discovery of Na+ pumping by the NADH:ubiquinone oxidoreductase (complex I) of Klebsiella pneumoniae, we show here that complex I from Escherichia coli is a Na+ pump as well. Our study object was the Escherichia coli mutant EP432, which lacks the Na+/H+ antiporter genes nhaA and nhaB and is therefore unable to grow on LB medium at elevated Na+ concentrations. During growth on mineral medium, the Na+ tolerance of E. coli EP432 was influenced by the organic substrate. NaCl up to 450 mM did not affect growth on glycerol and fumarate, but growth on glucose was inhibited. Correlated to the Na+ tolerance was an increased synthesis of complex I in the glycerol/fumarate medium. Inverted membrane vesicles catalysed respiratory Na+ uptake with NADH as electron donor. The sodium ion transport activity of vesicles from glycerol/fumarate-grown cells was 40 nmol mg-1 min-1 and was resistant to the uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), but was inhibited by the complex I-specific inhibitor rotenone. With an E. coli mutant deficient in complex I, the Na+ transport activity was low (1-3 nmol mg-1 min-1), and rotenone was without effect.  相似文献   

6.
In the present study we have used beef heart submitochondrial preparations (BH-SMP) to demonstrate that a component of mitochondrial Complex I, probably the NADH dehydrogenase flavin, is the mitochondrial site of anthracycline reduction. During forward electron transport, the anthracyclines doxorubicin (Adriamycin) and daunorubicin acted as one-electron acceptors for BH-SMP (i.e. were reduced to semiquinone radical species) only when NADH was used as substrate; succinate and ascorbate were without effect. Inhibitor experiments (rotenone, amytal, piericidin A) indicated that the anthracycline reduction site lies on the substrate side of ubiquinone. Doxorubicin and daunorubicin semiquinone radicals were readily detected by ESR spectroscopy. Doxorubicin and daunorubicin semiquinone radicals (g congruent to 2.004, signal width congruent to 4.5 G) reacted avidly with molecular oxygen, presumably to produce O2-, to complete the redox cycle. The identification of Complex I as the site of anthracycline reduction was confirmed by studies of ATP-energized reverse electron transport using succinate or ascorbate as substrates, in the presence of antimycin A or KCN respiratory blocks. Doxorubicin and daunorubicin inhibited the reduction of NAD+ to NADH during reverse electron transport. Furthermore, during reverse electron transport in the absence of added NAD+, doxorubicin and daunorubicin addition caused oxygen consumption due to reduction of molecular oxygen (to O2-) by the anthracycline semiquinone radicals. With succinate as electron source both thenoyltrifluoroacetone (an inhibitor of Complex II) and rotenone blocked oxygen consumption, but with ascorbate as electron source only rotenone was an effective inhibitor. NADH oxidation by doxorubicin during BH-SMP forward electron transport had a KM of 99 microM and a Vmax of 30 nmol X min-1 X mg-1 (at pH 7.4 and 23 degrees C); values for daunorubicin were 71 microM and 37 nmol X min-1 X mg-1. Oxygen consumption at pH 7.2 and 37 degrees C exhibited KM values of 65 microM for doxorubicin and 47 microM for daunorubicin, and Vmax values of 116 nmol X min-1 X mg-1 for doxorubicin and 114 nmol X min-1 X mg-1 for daunorubicin. In marked contrast with these results, 5-iminodaunodrubicin (a new anthracycline with diminished cardiotoxic potential) exhibited little or no tendency to undergo reduction, or to redox cycle with BH-SMP. Redox cycling of anthracyclines by mitochondrial NADH dehydrogenase is shown, in the accompanying paper (Doroshow, J. H., and Davies, K. J. A. (1986) J. Biol. Chem. 261, 3068-3074), to generate O2-, H2O2, and OH which may underlie the cardiotoxicity of these antitumor agents.  相似文献   

7.
Methanogenic bacteria are considered to couple methane formation with the synthesis of ATP by a chemiosmotic mechanism. This hypothesis was tested with Methanobacterium thermoautotrophicum. Methane formation from H2 and CO2 (2.5 - 3 mumol X min-1 X mg cells-1) by cell suspensions of this organism resulted in the formation of an electrochemical proton potential (delta mu H +) across the cytoplasmic membrane of 230 mV (inside negative) and in the synthesis of ATP up to an intracellular concentration of 5 - 7 nmol/mg. The addition of ionophores at concentrations which completely dissipated delta mu H + without inhibiting methane formation did not result in an inhibition of ATP synthesis. It thus appears that delta mu H + across the cytoplasmic membrane is not the driving force for the synthesis of ATP in M. thermoautotrophicum.  相似文献   

8.
Pathways for Ca2+ efflux in heart and liver mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates.  相似文献   

9.
1. A method is described for establishing steady-state conditions of calcium transport across the inner membrane of rat liver mitochondria and for determining the current of Ca2+ flowing across the membrane, together with the Ca2+ electrochemical gradient across the native Ca2+ carrier. These parameters were used to quantify the apparent Ca2+ conductance of the native carrier. 2. At 23 degrees C and pH7.0, the apparent Ca2+ conductance of the carrier is close to 1 nmol of Ca2+-min-1-mg of protein-1 mV-1. Proton extrusion by the respiratory chain, rather than the Ca2+ carrier itself, may often be rate-limiting in studies of initial rates of Ca2+ uptake. 3. Under parallel conditions, the endogenous H+ conductance of the membrane is 0.3 nmol of H+-min-1-mg of protein-1-mV-1. 4. Ruthenium Red and La3+ both strongly inhibit the Ca2+ conductance of the carrier, but are without effect on the H+ conductance of the membrane. 5. The apparent Ca2+ conductance of the carrier shows a sigmoidal dependence on the activity of Ca2+ in the medium. At 23 degrees C and pH7.2, half-maximum conductance is obtained at a Ca2+ activity of 4.7 muM. 6. The apparent Ca2+ conductance and the H+ conductance of the inner membrane increase fourfold from 23 degrees to 38 degrees C. The apparent Arrhenius activation energy for Ca2+ transport is 69kJ/mol. The H+ electrochemical gradient maintained in the absence of Ca2+ transport does not vary significantly with temperature. 7. The apparent Ca2+ conductance increases fivefold on increasing the pH of the medium from 6.8 to 8.0. The H+ conductance of the membrane does not vary significantly with pH over this range. 8. Mg2+ has no effect on the apparent Ca2+ conductance when added at concentration up to 1 mM. 9. Results are compared with classical methods of studying Ca2+ transport across the mitochondrial inner membrane.  相似文献   

10.
In previous studies, respiring Bradyrhizobium sp. strain 32H1 cells grown under 0.2% O2, conditions that derepress N2 fixation, were found to have a low proton motive force of less than -121 mV, because of a low membrane potential (delta psi). In contrast, cells grown under 21% O2, which do not fix N2, had high proton motive force values of -175 mV or more, which are typical of respiring bacteria, because of high delta psi values. In the present study, we found that a delta psi of 0 mV in respiring cells requires growth in relatively high-[K+] media (8 mM), low O2 tension, and high internal [K+]. When low-[O2], high-[K+]-grown cells were partially depleted of K+, the delta psi was high. When cells were grown under 21% O2 or in media low in K+ (50 microM K+), the delta psi was again high. The transmembrane pH gradient was affected only slightly by varying the growth or assay conditions. In addition, low-[O2], high-[K+]-grown cells had a greater proton permeability than did high-[O2]-grown cells. To explain these findings, we postulate that cells grown under conditions that derepress N2 fixation contain an electrogenic K+/H+ antiporter that is responsible for the dissipation of the delta psi. The consequence of this alteration in K+ cycling is rerouting of proton circuits so that the putative antiporter becomes the major pathway for H+ influx, rather than the H+-ATP synthase.  相似文献   

11.
The membrane potential of primitive red cells from 4- and 6-day old chick embryos has been determined using the fluorescent dye Dis-C3-(5). At day 4 the membrane potential Em was -44 mV for pH 7.4 and 20 degrees C and -36 mV at day 6. Both values are far removed from the equilibrium potential for chloride, which is about -14 mV at day 6. Changes in the external potassium, sodium or chloride concentration were without effect on the membrane potential, except at very high potassium concentrations, where a small but significant depolarization was observed at day 6. The measurements gave the same results in the absence or presence of the anion exchange blocking agent DIDS. Three pieces of evidence indicate that the membrane potential of primitive red cells is primarily caused by an electrogenic H+ conductance: 1) The measured membrane potential of -36 mV at day 6 is close to the previously determined proton equilibrium potential (Baumann and Haller, 1983) EH + of -36 mV. 2) Addition of the electrosilent Cl-/OH- exchanger tributyltin causes a significant depolarization of about 20 mV at day 4 and about 14 mV at day 6. 3) Measurement of hydrogen ion fluxes demonstrate a potential dependent proton conductance, which increases with depolarization. These results indicate that large qualitative differences exist with regard to the mechanisms involved in the generation of membrane potential and hydrogen distribution between red cell and plasma of embryonic and adult chicken.  相似文献   

12.
A study is presented of the kinetics and stoichiometry of fast proton translocation associated to aerobic oxidation of components of the mitochondrial respiratory chain. 1. Aerobic oxidation of ubiquinol and b cytochromes is accompanied in EDTA particles, obtained by sonication of beef-heart mitochondria, by synchronous proton uptake. 2. The rapid proton uptake associated to oxidation and b cytochromes is greatly stimulated by valinomycin plus K+, but is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 3. 4 gion H+ are taken up per mol ubiquinol oxidized by oxygen. This H+/2e- ratio, measured in the rapid anaerobic-aerobic transition of the particles is unaffected by carbonyl cyanide p-trifluoromethoxyphenylhydrazone. 4. Intact mitochondria aerobic oxidation of oxygen-terminal electron carriers is accompanied by antimycin-insensitive synchronous proton release, oxidation of ubiquinol and reduction of b cytochromes. The amount of protons released is in excess with respect to the amount of ubiquinol oxidized. 5. It is concluded that electron flow along complex III, from ubiquinol to cytochrome c, is directly coupled to vectorial proton translocation. The present data suggest that there exist(s) between ubiquinol and cytochrome c one (or two) respiratory carrier(s), whose oxido-reduction is directly linked to effective transmembrane proton translocation.  相似文献   

13.
The ability of isolated mitochondria from rat brown-adipose tissue to regulate extramitochondrial Ca2+ (measured by arsenazo) was studied in relation to their ability to produce heat (measured polarographically). The energetic state of the mitochondria was expressed as a membrane potential, delta psi (estimated with safranine), and was varied semi-physiologically by the use of different GDP concentrations. In these mitochondria GDP binds to the 32-kDa polypeptide, thermogenin, which regulates coupling. Ca2+ uptake (at 5 microM extramitochondrial Ca2+) was maximal at delta psi greater than 150 mV. Basal Ca2+ release increased from 1 to 2 nmol x min-1 x mg-1 below 150 mV. Na+ -stimulated rate of Ca2+ release was stable within the investigated delta psi span (100-160 mV). Initial Ca2+ levels were maintained below 0.2 microM for 100 mV less than delta psi less than 160 mV. Ca2+ levels maintained after Ca2+ challenge (20 nmol Ca2+ x mg-1) were below 0.4 microM for delta psi greater than 135 mM. Respiration was unstimulated for delta psi greater than 150 mV and was maximal at delta psi less than or equal to 135 mV. In the presence of well-oxidised substrates, the respiration at maximally activated thermogenin was markedly below fully uncoupled respiration and was probably limited by thermogenin activity--i.e. by a limited H+ reentry (OH- exit) and therefore by a membrane potential maintained at about 135 mV. It is concluded that at membrane potentials of 135 mV and above the mitochondria exhibit full Ca2+ control and are able to regulate thermogenic output up to maximum without interfering with this Ca2+ control. Membrane potential probably does not decrease below 135 mV in vivo. Therefore, Ca2+ homeostasis and thermogenesis are non-interfering and can be hormonally independently regulated, e.g. by alpha-adrenergic and beta-adrenergic stimuli, respectively.  相似文献   

14.
Guinea-pig cerebral cortex synaptosomes steadily release H2O2 into the suspending medium, at the rate of 20-30 pmol min-1 mg protein-1. A transient increase of the H2O2 release is induced by the addition of 1 mM Ca2+, which declines within 60-90 s to a rate identical or slightly higher than that before Ca2+. The extra H2O2 following Ca2+ addition varies between 40-100 pmol/mg protein and is insensitive to verapamil. The H2O2 release increases strongly (up to 250 pmol min-1 mg-1) upon depletion of the synaptosomal glutathione by treatment with 1-chloro-2,4-dinitrobenzene, a substrate for glutathione transferase. This treatment however has no effect on the Ca2+-induced H2O2 transient. In these treated synaptosomes a further increase of the output of H2O2 is rapidly induced upon addition of the Ca2+ ionophore ionomycin. This increase (about 100 pmol min-1 mg-1) lasts several minutes and requires the presence of Ca2+. A similar, though less pronounced increased H2O2 release is obtained (also in the absence of Ca2+) upon depolarization of the synaptosomal plasma membrane with KCl or with veratridine.  相似文献   

15.
The transmembrane electrical potential (deltaphi), the proton flux (H+), the rate of electron transport (e), the pH gradient (deltapH) and the rate of phosphorylation (ATP) were measured in chloroplasts of spinach. Photosynthesis was excited periodically with flashes of variable frequencies and intensities. A new method is described for determining the rate of electron transport and proton flux. Under conditions where the rate of electron transport and proton flux are not pH controlled the following correlations were found in the range 50 mV less than or equal to deltaphi less than or equal to 125 mV and 1.8 less than or equal to deltapH less than or equal to 2.7: (1) The pH gradient, deltapH, increases with H+ independently of Phout between 7-9. (2) The rate of phosphorylation, ATP, depends exponentially on deltapH (at constant deltaphi) and is independent of pHout between 7-9. (3) The rate of phosphorylation, ATP, depends also on deltaphi (at constant deltapH and at constant proton flux H+). (4) The proton flux via the ATPase pathway, Hp+, depends non-linearly on the ratio of the proton concentrations: Hp+ approximately (Hin+/Hout+)b, (b=2.3--2.6). The proton flux via the basal pathway, Hb+, depends linearly on the ratio of the proton concentrations: Hb+ approximately (Hin/Hout). (5) The ratio deltaH+/ATP (e/ATP, i.e. the ratio of the total proton flux, Hp+ + Hb+, and the rate of ATP formation, ATP, depends strongly on deltaphi and on deltapH. The ratio is deltaH+/ATP approximately 3 (e/ATP approximately 1.5) at deltapH 2.7 and deltaphi = 125 mV. (6) It is supposed that the reason for the dependence of deltaH+/ATP on deltaphi anddeltapH is the different functional dependence of the basal proton flux Hb+ and the phosphorylating proton flux Hp+ on deltapH and deltaphi. The calculation of deltaH+/ATP on the basis of this assumption is in fair agreement with the experimental values. Also the "threshold" effects can be explained in this way. (7) The ratio of deltaHp+/ATP, i.e. the ratio of the phosphorylating proton flux Hp+ and ATP, is deltaHp+/ATP APPROXIMATELY 2.4.  相似文献   

16.
Complex I is the site for electrons entering the respiratory chain and therefore of prime importance for the conservation of cell energy. It is generally accepted that the complex I-catalysed oxidation of NADH by ubiquinone is coupled specifically to proton translocation across the membrane. In variance to this view, we show here that complex I of Klebsiella pneumoniae operates as a primary Na+ pump. Membranes from Klebsiella pneumoniae catalysed Na+-stimulated electron transfer from NADH or deaminoNADH to ubiquinone-1 (0.1-0.2 micromol min-1 mg-1). Upon NADH or deaminoNADH oxidation, Na+ ions were transported into the lumen of inverted membrane vesicles. Rate and extent of Na+ transport were significantly enhanced by the uncoupler carbonylcyanide-m-chlorophenylhydrazone (CCCP) to values of approximately 0.2 micromol min-1 mg-1 protein. This characterizes the responsible enzyme as a primary Na+ pump. The uptake of sodium ions was severely inhibited by the complex I-specific inhibitor rotenone with deaminoNADH or NADH as substrate. N-terminal amino acid sequence analyses of the partially purified Na+-stimulated NADH:ubiquinone oxidoreductase from K. pneumoniae revealed that two polypeptides were highly similar to the NuoF and NuoG subunits from the H+-translocating NADH:ubiquinone oxidoreductases from enterobacteria.  相似文献   

17.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

18.
S L Li  P F Yan  I B Paz  Y Fujita-Yamaguchi 《Biochemistry》1992,31(49):12455-12462
We have expressed, purified, and characterized the insulin receptor protein tyrosine kinase (PTK) retaining the transmembrane and downstream domains. The proteins expressed in insect cells using a baculovirus expression system were identified as membrane-bound by immunofluorescence staining and biochemical characterization. One-step purification by immunoaffinity chromatography from Triton X-100 cell extracts resulted in a approximately 360-fold increase in the specific kinase activity with a yield of approximately 50%. An appMr = approximately 60,000 protein was the major component identified by both silver staining of the purified enzyme and immunostaining of the crude extracts after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Using nondenaturing conditions, the molecular weight was estimated to be approximately 250,000 and approximately 500,000 by glycerol gradient centrifugation and gel permeation chromatography, respectively, suggesting that oligomers of the beta-subunit domains such as tetramers and octamers are formed. The basal PTK activity of this enzyme was much higher than those of previously reported soluble-form insulin receptor PTKs expressed in insect cells or the native receptor. Km and Vmax for two substrates, src-related peptide and poly(Glu, Tyr) (4:1), were 2.4 mM and 2.5 mumol min-1 mg-1 and 0.26 mM and 1.2 mumol min-1 mg-1, respectively. Specific activities measured under two previously reported conditions using histone H2B as a substrate were 100 or 135 nmol min-1 mg-1, in contrast to those of soluble PTKs which were reported to be 20 or 70 nmol min-1 mg-1, respectively. The purified enzyme was autophosphorylated at Tyr residues. Autophosphorylation activated the enzyme approximately 3-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
1. The membrane-integrated portion (TF0) of the proton translocating ATPase complex (TF0-F1) of the thermophilic bacterium PS3 was highly purified. Its proton-conducting activity was investigated in vesicles reconstituted from TF0 and phospholipids (TF0 vesicles). 2. The rate of proton conduction through TF0 was proportional to the membrane potential imposed (6H+ uptake/s/TF0 molecule with 103 mV at pH 8.0). The pH profile of the rate revealed that a proton, not a hydroxy ion, was the true substrate conducted and that there was a monoprotic proton binding site in TF0 (pKa = 6.8). The temperature coefficient of proton conductance of TF0 showed a considerable variation depending on the phospholipids of the vesicles with respective transition temperatures. 3. Passive proton conduction through TF0 was inhibited stoichiometrically by addition of either the soluble ATPase portion (TF1) of TF0-F1, or an energy transfer inhibitor dicyclohexylcarbodiimide or an antibody against TF0. 4. The proton conductance of TF0 was concluded to represent its intrinsic activity in the original TF0-F1 complex.  相似文献   

20.
We have developed a mathematical model in concert with an assay that allows us to calculate proton (H+) flux and conductance through a single FO of the F1FO ATP synthase. Lipid vesicles reconstituted with just a few functional FO from Escherichia coli were loaded with 250 mM K+ and suspended in a low K+ solution. The pH of the weakly buffered external solution was recorded during sequential treatment with the potassium ionophore valinomycin, the protonophore carbonyl cyanide 3-chlorophenylhydrazone, and HCl. From these pH traces and separate determinations of vesicle size and lipid concentration we calculate the proton conductance through a single FO sector. This methodology is sensitive enough to detect small (15%) conductance changes. We find that wild-type FO has a proton flux of 3100 +/- 500 H+/s/FO at a transmembrane potential of 106 mV (25 degrees C and pH 6.8). This corresponds to a proton conductance of 4.4 fS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号