首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R J Lukas  H Morimoto  E L Bennett 《Biochemistry》1979,18(11):2384-2395
Agonist-binding affinities of central nervous system nicotinic acetylcholine receptors (nAcChR) are sensitive to the duration of exposure to agonist. These agonist-induced changes in receptor state may be mimicked by appropriate modification of receptor thio groups and/or by manipulation of solvent ionic composition. In the absence of Ca2+, the concentration of acetylcholine (AcCh) necessary to prevent half of specific 3H-labeled alpha-bungarotoxin binding is approximately 1 mM for nAcChR treated with dithiothreitol (DTT) or DTT-N-ethylmaleimide (low-affinity states) and approximately 40 microM for nAcChR treated with DTT-5,5'-dithiobis(2-nitrobenzoic acid) or for native nAcChR pretreated with AcCh (high-affinity states). Addition of Ca2+ results in an increase in the effectiveness of AcCh toward blocking toxin binding. None of these treatments alters toxin or antagonist binding nor are there observed differences in Hill numbers for agonist binding. Agonists competitively inhibit toxin binding to low-affinity states, but noncompetitive inhibition is observed for binding to high-affinity states. Values of AcCh dissociation constants estimated from these data fall within the range of values determined physiologically with nAcChR from other systems. The data indicate that the redox state of brain nAcChR thio groups and Ca2+ may mediate physiologically important changes in the receptor state during activation and desensitization.  相似文献   

2.
Studies were conducted on the properties of 125I-labeled alpha-bungarotoxin binding sites on cellular membrane fragments derived from the PC12 rat pheochromocytoma. Two classes of specific toxin binding sites are present at approximately equal densities (50 fmol/mg of membrane protein) and are characterized by apparent dissociation constants of 3 and 60 nM. Nicotine and d-tubocurarine are among the most potent inhibitors of high-affinity toxin binding. The affinity of high-affinity toxin binding sites for nicotinic cholinergic agonists is reversibly or irreversibly decreased, respectively, on treatment with dithiothreitol or dithiothreitol and N-ethylmaleimide. The nicotinic receptor affinity reagent bromoacetylcholine irreversibly blocks high-affinity toxin binding to PC12 cell membranes that have been treated with dithiothreitol. Two polyclonal antisera raised against the nicotinic acetylcholine receptor from Electrophorus electricus inhibit high-affinity toxin binding. These detailed studies confirm that curaremimetic neurotoxin binding sites on the PC12 cell line are comparable to toxin binding sites from neural tissues and to nicotinic acetylcholine receptors from the periphery. Because toxin binding sites are recognized by anti-nicotinic receptor antibodies, the possibility remains that they are functionally analogous to nicotinic receptors.  相似文献   

3.
Pretreatment of striatal membranes with N-ethylmaleimide in the presence of a D1-specific agonist inactivated endogenous guanine nucleotide binding proteins (G proteins), but not D1 dopamine receptors, resulting in a loss of high-affinity agonist binding sites. Such D1 receptors were solubilized, mixed with exogenous G proteins from cells not containing D1 receptors, and reconstituted into phospholipid vesicles. These reconstituted receptors were able to couple to the exogenous G proteins, and the proportion of agonist high-affinity sites of the receptor (40-57%) was similar to levels obtained with naive receptors coupling to endogenous G proteins (40%) upon solubilization and reconstitution. These hybrid high-affinity sites were fully modulated by guanine nucleotides. Pretreatment of cells with pertussis toxin prior to extraction of G proteins resulted in a 50% decrease in the proportion of high-affinity sites; these sites remained sensitive to guanine nucleotides. When D1 receptors were reconstituted with extracts of cyc- cells, which lack stimulatory G proteins, the proportion of high-affinity sites was reduced to 31% of the total. Pertussis toxin treatment of the cyc- cells completely abolished the formation of high-affinity sites. These results demonstrate that D1-dopaminergic receptors are able to couple to not only stimulatory G proteins (Gs), but also to inhibitory G proteins (Gi).  相似文献   

4.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

5.
α-Bungarotoxin (α-Bgt), an α-neurotoxin, has been 14C-methylated by treatment with [14C]formaldehyde following NaCNBH3 reduction. The methylation rate is fast (about 84% methylation in 15 min), with 12 methyl groups incorporated per mole of α-Bgt or a mean of 1.7 methyl groups per available amine residue. The specific activity of α-[14C]Bgt is 768 mCi/mmol. Unlike most of the reported chemical modifications of α-neurotoxins, involving a high decrease of the toxin activity after modification, α-[14C]Bgt retains 100% of its unmodified ability to bind to both isolated acetylcholine receptor (AcChR) and AcChR-enriched membrane fragments prepared from Torpedo californica. This lysyl residue modification does not perturb the toxin binding activity, probably, because the net positive charges of the ?-amino groups and amino-terminal residue remain unaltered. 14C-Methylated α-Bgt appears better suited than 125I-α-Bgt for use in AcChR binding studies because of the longer half-life of the isotope, and the apparent high uniformity of labeling of the toxin preparations.  相似文献   

6.
Neomycin, an inositol-phospholipid-binding aminoglycoside antibiotic, is known to interfere with signal transduction mechanisms involving phospholipase C as effector enzyme. In this study, we report that neomycin can also markedly influence agonist binding of G-protein-coupled receptors. In membranes of differentiated human leukemia cells (HL 60 cells), neomycin (0.1-10 mM) was found to induce high-affinity binding of the chemotactic tripeptide, N-formyl-methionylleucylphenylalanine (fMet-Leu-Phe), to its receptor sites in a manner similar to magnesium. Gentamycin and streptomycin, two other aminoglycoside antibiotics, were as potent and as effective as neomycin or magnesium in inducing high-affinity agonist receptor binding. Pretreatment of the cells with pertussis toxin reduced the effects of magnesium and neomycin on agonist receptor binding likewise. In contrast, magnesium but not neomycin largely enhanced the potency of guanine nucleotides, particularly of GTP and its analog, guanosine-5'-O-(3-thiotriphosphate), to reduce fMet-Leu-Phe receptor binding, while maximal inhibition of agonist receptor binding by guanine nucleotides was identical with magnesium and neomycin. Furthermore, neomycin could not replace magnesium in providing stimulation of HL 60 membrane high-affinity GTPase by fMet-Leu-Phe. In close agreement to these findings on the pertussis-toxin-sensitive Gi-protein-coupled formyl peptide receptors, neomycin in a manner similar to magnesium induced high-affinity agonist binding of Gs-protein-coupled beta-adrenoceptors. Similar to formyl peptide receptor binding, high-affinity binding of isoproterenol to beta-adrenoceptors in guinea pig lung membranes induced by magnesium and neomycin was inhibited by the GTP analog, guanosine-5'-O-(3-thiotriphosphate), to a similar maximal extent but with an about 100-fold higher potency in the presence of magnesium than in the presence of neomycin. The data presented thus indicate that neomycin and other aminoglycoside antibiotics can mimic the action of magnesium (or other divalent cations) in inducing high-affinity agonist binding of Gi- and Gs-protein-coupled receptors, but not in inducing subsequent G-protein activation by guanosine triphosphates. The data, furthermore, suggest that neomycin by this selective action will be a powerful tool to dissect the multiple sites of magnesium's action in the agonist receptor-G-protein interaction.  相似文献   

7.
Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.  相似文献   

8.
The TE671 human medulloblastoma cell line expresses a variety of characteristics of human neurons. Among these characteristics is the expression of membrane-bound high-affinity binding sites for alpha-bungarotoxin, which is a potent antagonist of functional nicotinic acetylcholine receptors on these cells. These toxin binding sites represent a class of nicotinic receptor isotypes present in mammalian brain. Treatment of TE671 cells during proliferative growth phase with nicotine or carbamylcholine, but not with muscarine or d-tubocurarine, induced up to a five-fold increase in the density of radiolabeled toxin binding sites in crude membrane fractions. This effect was blocked by co-incubation with the nicotinic antagonists d-tubocurarine and decamethonium, but not by mecamylamine or by muscarinic antagonists. Following a 10-13 h lag phase upon removal of agonist, recovery of the up-regulated sites to control values occurred within an additional 10-20 h. These studies indicate that the expression of functional nicotinic acetylcholine receptors on TE671 cells is subject to regulation by nicotinic agonists. Studies of the murine CNS have consistently indicated nicotine-induced up-regulation of nicotinic acetylcholine receptors, thereby supporting the identification of the toxin binding site on these cells as the functional nicotinic receptor. Although a mechanism for this effect is not apparent, nicotine-induced receptor blockade does not appear to be involved.  相似文献   

9.
Parameters of ligand binding, stimulation of low-Km GTPase, and inhibition of adenylate cyclase were determined in intact human neuroblastoma SH-SY5Y cells and in their isolated membranes, both suspended in identical physiological buffer medium. In cells, the mu-selective opioid agonist [3H]Tyr-D-Ala-Gly(Me)Phe-Gly-ol ([3H]DAMGO) bound to two populations of sites with KD values of 3.9 and 160 nM, with less than 10% of the sites in the high-affinity state. Both sites were also detected at 4 degrees C and were displaced by various opioids, including quaternary naltrexone. The opioid antagonist [3H]naltrexone bound to a single population of sites, and in cells treated with pertussis toxin the biphasic displacement of [3H]naltrexone by DAMGO became monophasic with only low-affinity binding present. The toxin specifically reduced high-affinity agonist binding but had no effect on the binding of [3H]naltrexone. In isolated membranes, both agonist and antagonist bound to a single population of receptor sites with affinities similar to that of the high-affinity binding component in cells. Addition of GTP to membranes reduced the Bmax for [3H]DAMGO by 87% and induced a linear ligand binding component; a low-affinity binding site, however, could not be saturated. Compared with results obtained with membranes suspended in Tris buffer, agonist binding, including both receptor density and affinity, in the physiological medium was attenuated. The results suggest that high-affinity opioid agonist binding represents the ligand-receptor-guanine nucleotide binding protein (G protein) complex present in cells at low density due to modulation by endogenous GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Short-term receptor regulation by agonists is a well-known phenomenon for a number of receptors, including beta-adrenergic receptors, and has been associated with receptor changes revealed by radioligand binding. In the present study, we investigated the rapid changes in alpha 1-adrenergic receptors induced by agonists. alpha 1-receptors were studied on DDT1 MF-2 smooth muscle cells (DDT1-MF-2 cells) by specific [3H]prazosin binding. In competition binding on membranes and on intact cells at 4 degrees C or at 37 degrees C in 1-min assays, agonists competed for a single class of sites with relatively high affinity. By contrast, in equilibrium binding at 37 degrees C on intact cells agonists competed with two receptor forms (high- and low-affinity). We quantified the receptors in the high-affinity form by measuring the [3H]prazosin binding inhibited by 20 microM norepinephrine (this concentration selectively saturated the high-affinity sites). The low-affinity sites were measured by subtracting the binding of [3H]prazosin to the high-affinity sites from the total specific binding. High-affinity receptors were 85% of the total sites in binding experiments at 4 degrees C, but only 30% at 37 degrees C. On DDT1-MF-2 cells preequilibrated with [3H]prazosin at 4 degrees C, and then shifted to 37 degrees C for a few minutes, norepinephrine selectively reduced the high-affinity sites by 30%. We suggest that at 4 degrees C it is the native form of alpha 1-receptors that is measured, with most of the sites in the high-affinity form, while during incubation at 37 degrees C the norepinephrine present in the binding assay converts most of the receptors to an apparent low-affinity form, so that they are no longer recognized by 20 microM norepinephrine. The nature of this low-affinity form was further investigated. On DDT1-MF-2 cells preincubated with the agonist and then extensively washed at 4 degrees C (to maintain the receptor changes induced by the agonist) the number of receptors recognized by [3H]prazosin at 4 degrees C was reduced by 38%. After fragmentation of the cells, the number of receptors measured at 4 degrees C was the same in control and norepinephrine-treated cells, suggesting that the disruption of cellular integrity might expose the receptors which are probably sequestered after agonist treatment. In conclusion, the appearance of the low affinity for agonists at 37 degrees C may be due to the agonist-induced sequestration of alpha 1-adrenergic receptors, resulting in a limited accessibility to hydrophilic ligands.  相似文献   

11.
3,4-Dihydroxyphenylethylamine (dopamine) D2 receptors, solubilized from bovine striatal membranes using a cholic acid-NaCl combination, exhibited the typical pharmacological characteristics of both agonist and antagonist binding. The rank order potency of the agonists and antagonists to displace [3H]spiroperidol binding was the same as that observed with membrane-bound receptors. Computer-assisted analysis of the [3H]spiroperidol/agonist competition curves revealed the retention of high- and low-affinity states of the D2 receptor in the solubilized preparations and the proportions of receptor subpopulations in the two affinity states were similar to those reported in membrane. Guanine nucleotide almost completely converted the high-affinity sites to low-affinity sites for the agonists. The binding of the high-affinity agonist [3H]N-n-propylnorapomorphine ([3H]NPA) was clearly demonstrated in the solubilized preparations for the first time. Addition of guanylyl-imidodiphosphate completely abolished the [3H]NPA binding. When the solubilized receptors were subjected to diethylaminoethyl-Sephacel chromatography, the dopaminergic binding sites eluted in two distinct peaks, showing six- to sevenfold purification of the receptors in the major peak. Binding studies performed on both peaks indicated that the receptor subpopulation present in the first peak may have a larger proportion of high-affinity binding sites than the second peak. The solubilized preparation also showed high-affinity binding of [35S]guanosine-5'-(gamma-thio)triphosphate, a result suggesting the presence of guanine nucleotide binding sites, which may interact with the solubilized D2 receptors. These data are consistent with the retention of the D2 receptor-guanine nucleotide regulatory protein complex in the solubilized preparations and should provide a suitable model system to study the receptor-effector interactions.  相似文献   

12.
In a previous study we showed that in vivo treatment with pertussis toxin could inhibit some, but not all, effects of adenosine in the rat hippocampus. In this study we investigated the effect of pertussis toxin on the binding of adenosine analogues to A1 receptors in rat brain. Intraventricular injection of pertussis toxin (10 micrograms into the lateral ventricle) did not affect A1 receptor binding in any brain region studied, as evaluated by autoradiography. In vitro treatment of brain sections (10 microns) with pertussis toxin for 5 h, under conditions when greater than 80% of the G proteins were ADP ribosylated, did not alter radioligand binding to adenosine A1 receptors. GTP (10 microM) virtually abolished the high-affinity agonist binding to the A1 receptor. On the other hand, in solubilized cortical membrane preparations, pertussis toxin pretreatment induced a complete shift of the A1 receptors to the low-affinity state. This suggests that the ability of pertussis toxin to affect G proteins coupled to A1 receptors in brain depends not only on the distribution of the toxin but also on the configuration of receptors and G proteins.  相似文献   

13.
Two methods were employed to uncouple hepatic alpha 1-adrenergic receptors from their associated G-protein (termed Gp) in order to determine whether locking of the alpha 1-receptor in a high-affinity agonist state at cold temperatures (2 degrees C) represents formation of a ternary complex. Uncoupling is defined as the inability to observe the GppNHp-sensitive, high-affinity agonist state of the receptor in [3H]prazosin competition binding studies performed at 25 degrees C. The first method for achieving uncoupling involved brief alkalinization and resulted in greater than 95% loss of several G-proteins. The second method involved proteolytic cleavage of either part or all of the alpha 1-receptor coupling domain from the binding domain. Following either treatment, receptors were converted to the high-affinity agonist state at 2 degrees C. Thus, while formation of the high-affinity state of the receptor at higher temperatures may require Gp, formation of this state at 2 degrees C does not require Gp or even the entire alpha 1-adrenergic receptor.  相似文献   

14.
Agonist binding to multiple muscarinic receptors   总被引:3,自引:0,他引:3  
The binding of agonists to muscarinic cholinergic receptors is well described by a binding model of multiple affinity states (superhigh, high, and low) in most central and peripheral tissues. Although previous studies of the influences by divalent cations, guanine nucleotides, and sulfhydryl reagents support the concept that these regulators act through closely related sites to alter the relative proportions of muscarinic agonist affinity states, it has become apparent that muscarinic receptor subtypes (as defined with the nonclassical antagonist pirenzepine) are differentially affected by the regulators. For example, in tissues that have few high-affinity [3H]pirenzepine-binding sites (heart, ileum, cerebellum), magnesium ions promote the formation of a high agonist affinity state, whereas exposure of these tissues to the sulfhydryl reagent N-ethylmaleimide (NEM) or guanine nucleotides promotes the formation of a low agonist affinity state. Conversely, tissues rich in high-affinity [3H]pirenzepine-binding sites (cerebral cortex, corpus striatum, hippocampus) show little, if any, change in agonist binding site affinity when magnesium ions or guanine nucleotides are present. Furthermore, NEM enhances the muscarinic binding site affinity for agonists in these tissues. Taken together, these results support the concept of muscarinic receptor heterogeneity, as proposed from previous physiological studies, and indicate that the aforementioned regulators (guanine nucleotides, magnesium ions, NEM) differentially alter the agonist-binding properties of these muscarinic receptor subtypes.  相似文献   

15.
Cross-talk between cannabinoid CB1 and serotonin 5-HT receptors in rat cerebellar membranes was investigated using radioligand binding. In competition against the CB1 antagonist, [3 H]SR141716A, the agonist, WIN 55,212-2 yielded a biphasic isotherm. The majority of binding was to a high-affinity state that was significantly reduced by the GTP analogue, Gpp(NH)p. Interestingly, 5-HT enhanced the high-affinity binding constant of WIN 55,212-2 while attenuating the proportion of high-affinity binding. 5-HT also significantly reduced the proportion of high-affinity binding of the cannabinoid agonist, HU 210, but had no effect on the agonist, CP 55,940. The effect of 5-HT on WIN 55,212-2 binding was inhibited by the 5-HT2 receptor antagonist ritanserin as well as Gpp(NH)p, suggesting a dependence on the 5-HT2 receptor and on G protein-receptor interactions, respectively. Subsequent [3 H]WIN 55,212-2 dissociation kinetic experiments revealed that 5-HT promoted a slower-dissociating species of radiolabelled agonist-receptor complex. Our findings support a membrane-delimited cross-talk between two G protein-coupled receptors that are co-localized in certain cells of the central nervous system. Intriguingly, the cannabinoid agonist dependence of the 5-HT modulatory effect suggests that agonist-specific conformations of the CB1 receptor may also be important in determining the extent of this cross-talk.  相似文献   

16.
Studies were conducted on curaremimetic neurotoxin binding to the nicotinic acetylcholine receptor present on membrane fractions derived from the human medulloblastoma clonal line, TE671. High-affinity binding sites (KD = 2 nM for 1-h incubation at 20 degrees C) and low-affinity binding sites (KD = 40 nM) for 125I-labeled alpha-bungarotoxin are present in equal quantities (60 fmol/mg membrane protein). The kinetically determined dissociation constant for high-affinity binding of toxin is 0.56 nM (k1 = 6.3 X 10(-3) min-1 nM-1; k-1 = 3.5 X 10(-3) min-1) at 20 degrees C. Nicotine, d-tubocurarine, and acetylcholine are among the most effective inhibitors of high-affinity toxin binding. The quantity of toxin binding sites and their affinity for cholinergic agonists is sensitive to reduction, alkylation, and/or oxidation of membrane sulfhydryl residues. High-affinity toxin binding sites that have been subjected to reaction with the sulfhydryl reagent dithiothreitol are irreversibly blocked by the nicotinic receptor affinity reagent bromoacetylcholine. High-affinity toxin binding is inhibited in the presence of either of two polyclonal antisera or a monoclonal antibody raised against nicotinic acetylcholine receptors from fish electric tissue. Taken together, these results indicate that curaremimetic neurotoxin binding sites on membrane fractions of the TE671 cell line share some properties with nicotinic acetylcholine receptors of peripheral origin and with toxin binding sites on other neuronal tissues.  相似文献   

17.
Acetylcholine receptors on chick mononucleated muscle precursor cells   总被引:2,自引:0,他引:2  
Most mononucleated muscle precursor cells in 11-day embryonic chick pectoral muscles possess acetylcholine receptors. Cells dissociated without the use of proteolytic enzymes were exposed to 125I-labeled α-bungarotoxin and specific binding was determined by a filter assay and by autoradiography. Prior incubation with proteolytic enzymes removed nearly all of the specific toxin binding sites. There was a wide range in receptor number per cell within the population of 11-day cells. Cells dissociated from 7- to 8-day embryos bind less toxin than 11-day cells. This reflects a decrease in receptor number per cell rather than a decrease in the percentage of labeled cells. Reasons why acetylcholine receptors have not been detected on the majority of muscle precursor cells in previous studies are offered and it is suggested that the appearance of receptors may be an early sign of commitment to a myogenic lineage.  相似文献   

18.
19.
Abstract: D1 and D5 dopamine receptor genes, stably expressed in GH4C1 rat somatomammotrophic cells, display identical binding values and stimulate adenylate cyclase. Approximately 60% of D1 receptors were in the agonist high-affinity state and were converted to the low-affinity state by 100 µ M guanyl-5'-ylimidodiphosphate [Gpp(NH)p]. Of the 48% of D5 receptors in the high-affinity state, only half were modulated by 100 µ M Gpp(NH)p; in the presence of the G protein activator, AlF4, the high-affinity sites of D5 receptors were abolished by Gpp(NH)p, suggesting tight coupling between D5 receptors and G proteins. The high-affinity sites of D1, but not D5, receptors were reduced after pertussis toxin treatment of cells. Thus, whereas D1 receptors in GH4C1 cells couple to both Gs, the G stimulatory protein, and a pertussis toxin-sensitive G protein, D5 receptors couple to Gs and a pertussis toxin-insensitive G protein. Neither D1 nor D5 receptors were able to stimulate phosphoinositide metabolism in these cells. The ability of D5, but not D1, receptors to couple to novel G proteins may be significant in assigning a functional role for these receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号