首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of 23,24-bisnorchol-4-en-3-one-22-ol into 6β,11α,22-trihydroxy-23,24-bisnorchol-4-en-3-one by the fungus Rhizopus arrhizus has been shown to be dependent on the composition of the culture medium, with respect to yield of the triol. The transformation of the 22-alcohol to 6β,11α-dihydroxy-pregn-4-ene-3,20-dione is also reported.  相似文献   

2.
The transformation of 22-hydroxy-23,24-bisnorchol-4-en-3-one to 7alpha-22-dihydroxy-23,24-bisnorchol-4-en-3-one by Botryodiploida theobromae, Lasiodiplodia theobromae, and various Botryosphaeria strains is described. Factors affecting the reaction were incubation temperature, sonication of the substrate, and addition of 2,2'-dipyridyl, extra carbohydrate, and Amberlite XAD-7. The enzyme responsible for the reaction appeared to be very specific and was not characteristic of all members of the genera listed above.  相似文献   

3.
The heterotrophic dinoflagellate Crypthecodinium cohnii contained the 4α-methyl sterols, dinosterol, dehydrodinosterol (4α,23,24-trimethylcholesta-5,22-dien-3β-ol) and the tentatively identified 4α,24-dimethyl-cholestan-3β-ol and 4α,24-dimethylcholest-5-en-3β-ol. The major 4-demethyl sterol was cholesta-5,7-dien-3β-ol which was accompanied by a smaller amount of cholesterol and traces of several other C27,C28 and C29 sterols. In addition, a 3-oxo-steroid fraction was isolated and the major component identified as dinosterone (4α,23,24-trimethylcholest-22-en-3-one). The possible biosynthetic relationships of these compounds are discussed.  相似文献   

4.
From the extract of the fruits of Solanum xanthocarpum (Solanaceae), five new steroidal compounds were isolated and characterized: 4α-methyl-24ξ-ethyl-5α-cholest-7-en-3β,22ξ-diol (1), 3β,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (2), 3β-benzoxy-14β,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (3), 3β-benzoxy-14α,22ξ-dihydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (4) and 3β-(p-hydroxy)-benzoxy-22ξ-hydroxy-4α-methyl-24ξ-ethyl-5α-cholest-7-en-6-one (5).  相似文献   

5.
(22E)-3β-Hydroxysitosta-5,22-dien-7-one, (22R,23R)-3β,22,23-trihydroxysitost-5-en-7-one, and (22R,23R)-3β-hydroxy-22,23-isopropylidenedioxysitost-5-en-7-one were synthesized. The cytotoxicity and effects on cholesterol biosynthesis of the resulting 7-ketosterols, 7-ketocholesterol, and (22S,23S)-3β-hydroxy-22,23-oxidositost-5-en-7-one were studied in hepatoblastoma Hep G2 cells.  相似文献   

6.
Bacterial steroid catabolism is an important component of the global carbon cycle and has applications in drug synthesis. Pathways for this catabolism involve multiple acyl coenzyme A (CoA) synthetases, which activate alkanoate substituents for β-oxidation. The functions of these synthetases are poorly understood. We enzymatically characterized four distinct acyl-CoA synthetases from the cholate catabolic pathway of Rhodococcus jostii RHA1 and the cholesterol catabolic pathway of Mycobacterium tuberculosis. Phylogenetic analysis of 70 acyl-CoA synthetases predicted to be involved in steroid metabolism revealed that the characterized synthetases each represent an orthologous class with a distinct function in steroid side-chain degradation. The synthetases were specific for the length of alkanoate substituent. FadD19 from M. tuberculosis H37Rv (FadD19Mtb) transformed 3-oxo-4-cholesten-26-oate (kcat/Km = 0.33 × 105 ± 0.03 × 105 M−1 s−1) and represents orthologs that activate the C8 side chain of cholesterol. Both CasGRHA1 and FadD17Mtb are steroid-24-oyl-CoA synthetases. CasG and its orthologs activate the C5 side chain of cholate, while FadD17 and its orthologs appear to activate the C5 side chain of one or more cholesterol metabolites. CasIRHA1 is a steroid-22-oyl-CoA synthetase, representing orthologs that activate metabolites with a C3 side chain, which accumulate during cholate catabolism. CasI had similar apparent specificities for substrates with intact or extensively degraded steroid nuclei, exemplified by 3-oxo-23,24-bisnorchol-4-en-22-oate and 1β(2′-propanoate)-3aα-H-4α(3″-propanoate)-7aβ-methylhexahydro-5-indanone (kcat/Km = 2.4 × 105 ± 0.1 × 105 M−1 s−1 and 3.2 × 105 ± 0.3 × 105 M−1 s−1, respectively). Acyl-CoA synthetase classes involved in cholate catabolism were found in both Actinobacteria and Proteobacteria. Overall, this study provides insight into the physiological roles of acyl-CoA synthetases in steroid catabolism and a phylogenetic classification enabling prediction of specific functions of related enzymes.  相似文献   

7.
The anoxic metabolism of cholesterol was studied in the denitrifying bacterium Sterolibacterium denitrificans, which was grown with cholesterol and nitrate. Cholest-4-en-3-one was identified before as the product of cholesterol dehydrogenase/isomerase, the first enzyme of the pathway. The postulated second enzyme, cholest-4-en-3-one-Δ1-dehydrogenase, was partially purified, and its N-terminal amino acid sequence and tryptic peptide sequences were determined. Based on this information, the corresponding gene was amplified and cloned and the His-tagged recombinant protein was overproduced, purified, and characterized. The recombinant enzyme catalyzes the expected Δ1-desaturation (cholest-4-en-3-one to cholesta-1,4-dien-3-one) under anoxic conditions. It contains approximately one molecule of FAD per 62-kDa subunit and forms high molecular aggregates in the absence of detergents. The enzyme accepts various artificial electron acceptors, including dichlorophenol indophenol and methylene blue. It oxidizes not only cholest-4-en-3-one, but also progesterone (with highest catalytic efficiency, androst-4-en-3,17-dione, testosterone, 19-nortestosterone, and cholest-5-en-3-one. Two steroids, corticosterone and estrone, act as competitive inhibitors. The dehydrogenase resembles 3-ketosteroid-Δ1-dehydrogenases from other organisms (highest amino acid sequence identity with that from Pseudoalteromonas haloplanktis), with some interesting differences. Due to its catalytic properties, the enzyme may be useful in steroid transformations.  相似文献   

8.
Biotransformation of 3β-acetoxy-19-hydroxycholest-5-ene (19-HCA, 6 g) by Moraxella sp. was studied. Estrone (712 mg) was the major metabolite formed. Minor metabolites identified were 5α-androst-1-en-19-ol-3,17-dione (33 mg), androst-4-en-19-ol-3,17-dione (58 mg), androst-4-en-9α,19-diol-3,17-dione (12 mg), and androstan-19-ol-3,17-dione (1 mg). Acidic metabolites were not formed. Time course experiments on the fermentation of 19-HCA indicated that androst-4-en-19-ol-3,17-dione was the major metabolite formed during the early stages of incubation. However, with continuing fermentation its level dropped, with a concomitant increase in estrone. Fermentation of 19-HCA in the presence of specific inhibitors or performing the fermentation for a shorter period (48 h) did not result in the formation of acidic metabolites. Resting-cell experiments carried out with 19-HCA (200 mg) in the presence of α,α′-bipyridyl led to the isolation of three additional metabolites, viz., cholestan-19-ol-3-one (2 mg), cholest-4-en-19-ol-3-one (10 mg), and cholest-5-en-3β,19-diol (12 mg). Similar results were also obtained when n-propanol was used instead of α,α′-bipyridyl. Resting cells grown on 19-HCA readily converted both 5α-androst-1-en-19-ol-3,17-dione and androst-4-en-19-ol-3,17-dione into estrone. Partially purified 1,2-dehydrogenase from steroid-induced Moraxella cells transformed androst-4-en-19-ol-3,17-dione into estrone and formaldehyde in the presence of phenazine methosulfate, an artificial electron acceptor. These results suggest that the degradation of the hydrocarbon side chain of 19-HCA does not proceed via C22 phenolic acid intermediates and complete removal of the C17 side chain takes place prior to the aromatization of the A ring in estrone. The mode of degradation of the sterol side chain appears to be through the fission of the C17-C20 bond. On the basis of these observations, a new pathway for the formation of estrone from 19-HCA in Moraxella sp. has been proposed.  相似文献   

9.
Triticum aestivum L.) and foxtail millet (Setaria italica Beauv.) were found by GC-MS to contain, in addition to bulk sterols, 4-en-3-one steroids including 24-ethylcholesta-4,24(28)Z- dien-3-one (a new steroid), 24-methylcholest-4-en-3-one, 24-ethylcholesta-4,22E-dien-3-one and 24-ethylcholest-4-en-3-one, as well as 5α-steroidal 3-one compounds including 24-methyl-5α-cholestan-3-one, 24-ethyl-5α-cholestan-3-one and 24-ethyl 5α-cholest-22E-en-3-one (in S. italica only). Analysis of free sterol and steryl ester fractions indicated that campestanol and sitostanol were present at high levels in both seeds. These results suggest that the seeds of T. aestivum and S. italica synthesize campestanol from campesterol via 24-methylcholest-4-en-3-one and 24-methyl-5α-cholestan-3-one as has already been demonstrated in Arabidopsis thaliana L., and also produce sitostanol from sitosterol via 24-ethylcholest-4-en-3-one and 24-ethyl-5α-chotestan-3-one. Biosynthetic relationships of campestanol and sitostanol with C28 and C29 brassinosteroids are discussed. Received 4 September 1998/ Accepted in revised form 26 November 1998  相似文献   

10.
A phenanthrene derivative, aristololactam N-β-d-glucoside, and the steroids 3β-hydroxy-stigmast-5-en-7-one and 6β-hydroxy-stigmast-4-en-3-one have been isolated from Aristolochia indica.  相似文献   

11.
The fatty acid, sterol and chlorophyll pigment compositions of the marine dinoflagellates Gymnodinium wilczeki and Prorocentrum cordatum are reported. The fatty acids of both algae show a typical dinoflagellate distribution pattern with a predominance of C18, C20 and C22 unsaturated components. The acid 18:5ω3 is present at high concentration in these two dinoflagellates. G. wilczeki contains a high proportion (93.4%) of 4-methyl-5α-stanols including 4,23,24-trimethyl-5α-cholest-22E-en-3β-ol (dinosterol), dinostanol and 4,23,24-trimethyl-5α-cholest-7-en-3β-ol reported for the first time in dinoflagellates. The role of this sterol in the biosynthesis of 5α-stanols in dinoflagellates is discussed. P. cordatum contains high concentrations of a number of δ 24(28)-sterols with dinosterol, 24-methylcholesta-5,24(28)-dien-3β-ol, 23,24-dimethylcholesta-5,22E-dien-3β-ol, 4,24-dimethyl-5α-cholest-24(28)-en-3β-ol and a sterol identified as either 4,23,24-trimethyl- or 4-methyl-24-ethyl-5α-cholest-24(28)-en-3β-ol present as the five major components. The role of marine dinoflagellates in the input of both 4-methyl- and 4-desmethyl-5α-stanols to marine sediments is discussed.  相似文献   

12.
When Chlorella sorokiniana was cultured in the presence of 1 mg/1 triparanol succinate, there was a 42% reduction in total sterol concentration. Algal biomass was reduced by approximately the same amount. In addition to the cycloartenol, cyclolaudenol, 24-methyl-pollinastanol, ergosta-5, 7-dien-3β-ol, and ergosterol that occur in control culture, pollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol, 5α-ergosta-8(9), 22-dien-3β-ol, 5α-ergosta-8, 14-dien-3β-ol, 5α-ergost-8(9)-3n-3β-ol, 5α-ergost-8(14)-en-3β-ol, 5α-ergosta-7, 22-dien-3β-ol, and 5α-ergost-7-en-3β-ol were isolated and identified from triparanol succinate-treated cells. A biosynthetic pathway for sterol biosynthesis in this organism is postulated based on all the sterols that were isolated and identified in triparanol-treated cultures of C. sorokiniana. Cyclolaudenol appears to be the product of the first alkylation at C-24 in this organism rather than the more common 24-methylene cycloartanol. Since 24-methylene sterols are needed for the second alkylation reaction, this would explain the absence of C-29 sterols in C. sorokiniana. Four of the sterols identified in C. sorokiniana are reported for the first time in a living organism. They are: 24-methyl pollinastanol, 5α-ergosta-8, 14, 22-trien-3β-ol, 5α-ergosta-8(14), 22-dien-3β-ol and 5α-ergost-8(14)-en-3β-ol.  相似文献   

13.
The chemical syntheses of a number of 14α-alkyl substituted 15-oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of the biosynthesis of cholesterol and other biological effects. Described herein are the first chemical syntheses of 14α-ethyl-5α-cholest-7-en-3β-ol-15-one, bis-3β,15α-acetoxy-14α-ethyl-5α-cholest-7-ene, 3β-acetoxy-14α-ethyl-5α-cholest-7-en-15β-ol, 14α-ethyl-5α-cholest-7-en-3β,15β-diol, 14α-ethyl-5α-cholest-7-en-3β,15α-diol, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15α-ol, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15β-ol, bis-3β,15α-hexadecanoyloxy-14α-ethyl-5α-cholest-7-ene, 3β-hexadecanoyloxy-14α-ethyl-5α-cholest-7-en-15-one, 3α-benzoyloxy-14α-ethyl-5α-cholest-7-en-15-one, 14α-ethyl-5α-cholest-7-en-3α-ol-15-one, 14α-ethyl-5α-cholest-7-en-15-on-3β-yl pyridinium sulfate, 14α-ethyl-5α-cholest-7-en-15-on-3β-yl potassium sulfate (monohydrate), 14α-ethyl-5α-cholest-7-en-15-on-3α-yl pyridinium sulfate, 14α-ethyl-5α-cholest-7-en-15-on-3α-yl potassium sulfate (monohydrate), 3β-ethoxy-14α-ethyl-5α-cholest-7-en-15-one, 3β-acetoxy-14α-n-propyl-5α-cholest-7-en-15-one, 14α-n-propyl-5α-cholest-7-en-3β-ol-15-one, bis-3β, 15α-acetoxy-14α-n-propyl-5α-cholest-7-ene, 3β-acetoxy-14α-n-propyl-5α-cholest-7-en-15β-ol, 14α-n-propyl-5α-cholest-7-en-3β, 15α-diol, 14α-n-propyl-5α-cholest-7-en-3β, 15β-diol, 14α-n-butyl-5α-cholest-7-en-3β-ol-15-one, 3β-acetoxy-14-α-n-butyl-5α-cholest-7-en-15-one, bis-3β,15α-acetoxy-14α-n-butyl-5α-cholest-7-ene, 3β-acetoxy-14α-n-butyl-5α-cholest-7-en-15β-ol, 14α-n-butyl-5β-cholest-7-en-3β, 15β-diol, and 14α-n-butyl-5α-cholest-7-en-3β, 15α-diol.  相似文献   

14.
The dinoflagellate Glenodiniumhallii was investigated for its sterol composition. Five of the six sterols were isolated and identified as cholest-5-en-3β-ol, (24ξ)-24-methylcholest-5-en-3β-ol, stigmasta-5,22-dien-3β-ol, (22E,24R)-4α,23,24-trimethyl-5α-cholest-22-en-3β-ol, and 4α,23ξ,24ξ-trimethyl-5α-cholestan-3β-ol.  相似文献   

15.
(22R,23R)-22,23-dihydroxystigmast-4-en-3-one, (22R,23R)-22,23-dihydroxystigmast-4-en-3,6-dione, (22R,23R)-3β,5α,6β,22,23-pentahydroxystigmastane, (22R,23R)-5α,6α-oxido-3β,22,23-trihydroxystigmastane, (22R,23R)-5β,6β-oxido-3β,22,23-trihydroxystigmastane, and (22R,23R)-3β,6β,22,23-tetrahydroxystigmast-4-ene were synthesized. Their cytotoxicities were comparatively studied using the MCF-7 line of carcinoma cells of human mammary gland and cells of human hepatoma of the Hep G2 line.  相似文献   

16.
The stem of Cabralea canjerana (Vell.) Mart. yielded three new dammarane triterpenes 20S,24S-epoxy-7β,25-dihydroxy-3,4-secodammar-4(28)-en-3-oic acid, 20S,24S-epoxy-7β,15α,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid and 20S,24R-epoxy-7β,22ξ,25-trihydroxy-3,4-secodammar-4(28)-en-3-oic acid, which were identified on the basis of spectroscopic methods. The known dammarane triterpenes ocotillone, eichlerianic acid, shoreic acid and the sterols sitosterol, campesterol, stigmasterol, sitostenone and stigmast-5-en-3-one were also isolated and identified. The branches yielded the above three known dammaranes and eichlerialactone. The dammaranes in C. canjerana display strong similarities with Trichilieae tribe, which contains several dammaranes. The data reported herein thus provide firm support for placing Cabralea within the subfamily Melioideae, Trichilieae tribe.  相似文献   

17.
Norethindrone (17β-hydroxy-19-nor-17α-pregn-4-en-20-yn-3-one) and norethindrone acetate (17β-acetoxy-19-nor-17α-pregn-4-en-20-yn-3-one) interfered to a varying degree, by competitive inhibition, with the binding of progesterone and oestradiol to respective cytoplasmic receptors in the human uterus. Progesterone binding to 4S macromolecule was saturable and co-specific for progestins. Competitors like norgestrel (17β-hydroxy-18-methyl-19-nor-17α-pregn-4-en-20-yn-3-one), 19-norprogesterone, medroxyprogesterone acetate (17α-acetoxy-6α-methylpregn-4-ene-3,20-dione) and compound R5020 (17,21-dimethyl-19-norpregna-4,9-diene-3,20-dione) possessed higher binding affinities for the progestin receptor. The dissociation constant (Kd) for the progesterone–receptor interaction was 0.6–1.6nm and the receptor concentration ranged between 6600 and 8200 sites/cell. Norethindrone and norethindrone acetate competed for the progesterone receptor with inhibition constants (Ki) of 6.8 and 72nm respectively. Gradient displacement and competitive-receptor assays indicated that norethindrone acetate-binding affinity for progestin receptor was approximately one-tenth that of norethindrone and progesterone. The progestins also inhibited oestradiol binding to 4.6S oestrogenic receptor by 8–12%, involving interaction at the oestradiol-binding site with a calculated Ki value of 0.5–0.8μm. The competitive interaction of progestins with steroid receptors may be of putative importance in explaining the progestin action at the target site.  相似文献   

18.
The potential for biotransformation of the substrate 17β-hydroxyandrost-4-en-3-one (testosterone) by six filamentous fungi, namely, Rhizopus oryzae ATCC 11145, Mucor plumbeus ATCC 4740, Cunninghamella echinulata var. elegans ATCC 8688a, Aspergillus niger ATCC 9142, Phanerochaete chrysosporium ATCC 24725 and Whetzelinia sclerotiorum ATCC 18687, was investigated. In this study both free cells and macerated mycelia immobilised in calcium alginate were utilised and the results (products, % yields, % transformation) were compared. In general the encapsulated cells of the microorganisms effectively generated products similar to those found using free cells. However, with immobilised macerated mycelia, isolation of the transformation products was expedited by the simple work up procedure, and their purification was facilitated by the absence of fungal secondary metabolites. Twenty seven analogues of testosterone were generated, wherein the androstane skeleton was functionalised at C-1β, -2β, -6β, -7α, -11α, -14, -15α, -15β and -16β by the moulds. Redox chemistry was also observed. Seven of the analogues, 6β,11α,17β-trihydroxyandrost-4-en-3-one, 6β,14α,17β-trihydroxyandrost-4-en-3-one, 2,6β-dihydroxyandrosta-1,4-diene-3,17-dione, 2β,16β-dihydroxyandrost-4-ene-3,17-dione, 2β,6β-dihydroxyandrost-4-ene-3,17-dione, 2β,15β,17β-trihydroxyandrost-4-en-3-one and 2β,3α,17β-trihydroxyandrost-4-ene, were novel compounds. Five others, namely, 7α,17β-dihydroxyandrost-4-en-3-one, 6β,14α-dihydroxyandrost-4-ene-3,17-dione, 15α,17β-dihydroxyandrost-4-en-3-one, 16β,17α-dihydroxyandrost-4-en-3-one and 2β,16β,17β-trihydroxyandrost-4-en-3-one, were fully characterised for the first time.  相似文献   

19.
The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1–10 µg ml−1. Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.  相似文献   

20.
Almost an of the solvent-extractable sterols and their nuclearsaturated analogues in a sample of Walvis Bay surface sediment have been analysed by capillary GLC and GC-MS, and by coinjection with a variety of standards. The presence in sediments of 22-trans-24-nor-5α-cholest-22-en-3β-ol, 24-methylene-5α-cholestan-3β-ol, and components tentatively assigned as 23,24-dimethylcholesta-5,22-dien-3β-ol and 23,24-dimethyl-5α-cholest-22-en-3β-ol has been demonstrated for the first time. A novel sterol and its saturated analogue have also been found. The sterol distribution cannot be related solely to the reported major input of phytoplankton; the presence of 22,23-methylene-23,24-dimethylcholest-5-en-3β-ol and its saturated analogue indicates a coelenterate contribution. The analysis emphasises the necessity of glass capillary columns and coinjection of standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号