首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periodical cicadas in the genus Magicicada have an unusual life history that includes an exceptionally long life cycle and a massive, synchronized emergence. Considerable effort has been put into research aimed at understanding the evolutionary history of periodical cicadas, but surprisingly little attention has been given to their morphological evolution. Their slow flight and approachability have been described as 'predator-foolhardy' behaviour. We quantified flight speeds for M. cassini, M. septendecim, and Tibicen chloromera (a nonperiodical cicada species) , and interpreted them in terms of thorax musculature, body proportions and wing size and shape in relation to body size. On average, T. chloromera flew three to four times faster than did the two Magicicada species. Using empirical relationships between flight speed and body length, body mass or wing loading, we determined M. cassini and M. septendecim to be unusually slow fliers for their body size, whereas T. chloromera was not. The relatively slow flight speeds of Magicicada species could be largely accounted for by relatively small thoracic muscle masses, as indicated by thorax length × width measurements, and low wing loadings. Aspect ratio differences were contributing factors. Male Magicicada and female Tibicen were more active in mate searching than was the opposite sex, and correspondingly had relatively large aspect ratios. We interpret the morphological traits responsible for the slow flight of Magicicada species as being adaptations to searching for mates in dense aggregations around the canopy of trees, relatively unconstrained by the per-capita risk of predation.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 1–13.  相似文献   

2.
Nodulation is the first and quantitatively most important cellular defense reaction to bacterial infections in insects. Treating adults of the 17-year periodical cicadas, Magicicada septendecim and M. cassini, with eicosanoid biosynthesis inhibitors immediately prior to intrahemocoelic injections of the bacterium, Serratia marcescens, sharply reduced the nodulation response to bacterial challenges. Separate treatments with specific inhibitors of phospholipase A(2), cyclooxygenase, and lipoxygenase reduced nodulation, supporting our view that nodule formation is a multi-step process in which individual steps are separately mediated by lipoxygenase and cyclooxygenase products. The inhibitory influence of dexamethasone was apparent by 2 h after injection, and nodulation was significantly reduced, relative to control insects, over the following 14 h. The dexamethasone effects were reversed by treating bacteria-challenged insects with the eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. Low levels of arachidonic acid were detected in fat body phospholipids. These findings in adults of an exopterygote insect species with an unusual life history pattern broaden our hypothesis that eicosanoids mediate cellular immune reactions to bacterial infections in most, if not all, insects.  相似文献   

3.
1. Pulsed food resources are often considered equivalent in their potential impact on the reproduction and population dynamics of consumers, but differences in the attributes of food pulses and their distribution in the landscape may cause differences in their effects. 2. We tested whether a perishable pulsed resource (periodical cicadas, Magicicada spp.) had similar effects on the population dynamics of a generalist forest rodent, Peromyscus leucopus, as have been reported for a cacheable pulsed resource (acorn mast). 3. Because the availability of periodical cicadas may vary between edge and interior habitat, we also tested whether habitat type (edge vs. interior) and fragment size affected the abundance of cicadas and P. leucopus. 4. Nearly 90% of the variation in the relative population densities of P. leucopus was explained by the variation in the relative densities of periodical cicadas, and fragments with more cicadas tended to have more reproductive female mice and litters. 5. We found more cicadas and more P. leucopus in edge than interior habitat, but no differences in the relative densities of either in relation to fragment size. 6. Data from a non-emergence year revealed no differences other than the presence of periodical cicadas that could explain the 50% higher relative densities of P. leucopus in the emergence year. 7. At the beginning of the emergence of periodical cicadas, the three fragments with the highest numbers of emergence holes had three times more mice than the fragments with the lowest numbers of emergence holes, suggesting that P. leucopus is able to anticipate the emergence of periodical cicadas and increase reproduction prior to the pulse. 8. Hence, despite differences in perishability, seasonal timing and nutritional quality of pulsed food resources in a fragmented landscape, they appear to have similar positive effects on the population dynamics of the generalist rodent, P. leucopus and, in fact, P. leucopus may be able to anticipate resource pulses.  相似文献   

4.
Selection against costly reproductive interactions can lead to reproductive character displacement (RCD). We use information from patterns of displacement and inferences about predisplacement character states to investigate causes of RCD in periodical cicadas. The 13-year periodical cicada Magicicada neotredecim exhibits RCD and strong reproductive isolation in sympatry with a closely related 13-year species, Magicicada tredecim. Displacement is asymmetrical, because no corresponding pattern of character displacement exists within M. tredecim. Results from playback and hybridization experiments strongly suggest that sexual interactions between members of these species were possible at initial contact. Given these patterns, we evaluate potential sources of selection for displacement. One possible source is 'acoustical interference', or mate-location inefficiencies caused by the presence of heterospecifics. Acoustical interference combined with the species-specificity of song pitch and preference appears to predict the observed asymmetrical pattern of RCD in Magicicada. However, acoustical interference does not appear to be a complete explanation for displacement in Magicicada, because our experiments suggest a significant potential for direct sexual interactions between these species before displacement. Another possible source of selection for displacement is hybrid failure. We evaluate the attractiveness of inferred hybrid mating signals, and we examine the viability of hybrid eggs. Neither of these shows strong evidence of hybrid inferiority. We conclude by presenting a model of hybrid failure related to life cycle differences in Magicicada.  相似文献   

5.
Seventeen-year periodical cicadas ( Magicicada spp.) require 17 years to develop underground and all individuals at any location emerge synchronously within several days. The mechanisms that animals use to keep track of time are poorly understood and nothing is known about how cicada nymphs emerge after precisely 17 years. We altered the seasonal cycles of trees supporting cicada nymphs and thereby induced premature metamorphosis of the associated cicadas. This indicates that cicadas accomplish a consistently accurate 17-year preadult development time by counting host seasonal cycles and not either by the passage of real time or by the accumulation of degree days.  相似文献   

6.
Organisms use incomplete information from local experience to assess the suitability of potential habitat sites over a wide range of spatial and temporal scales. Although ecologists have long recognized the importance of spatial scales in habitat selection, few studies have investigated the temporal scales of habitat selection. In particular, cues in the immediate environment may commonly provide indirect information about future habitat quality. In periodical cicadas (Magicicada spp.), oviposition site selection represents a very long-term habitat choice. Adult female cicadas insert eggs into tree branches during a few weeks in the summer of emergence, but their oviposition choices determine the underground habitats of root-feeding nymphs over the following 13 or 17 years. Here, field experiments are used to show that female cicadas use the local light environment of host trees during the summer of emergence to select long-term host trees. Light environments may also influence oviposition microsite selection within hosts, suggesting a potential behavioural mechanism for associating solar cues with host trees. In contrast, experimental nutrient enrichment of host trees did not influence cicada oviposition densities. These findings suggest that the light environments around host trees may provide a robust predictor of host tree quality in the near future. This habitat selection may influence the spatial distribution of several cicada-mediated ecological processes in eastern North American forests.  相似文献   

7.
Mitochondrial inheritance is generally assumed to be maternal. However, there is increasing evidence of exceptions to this rule, especially in hybrid crosses. In these cases, mitochondria are also inherited paternally, so "paternal leakage" of mitochondria occurs. It is important to understand these exceptions better, since they potentially complicate or invalidate studies that make use of mitochondrial markers. We surveyed F1 offspring of experimental hybrid crosses of the 17-year periodical cicadas Magicicada septendecim, M. septendecula, and M. cassini for the presence of paternal mitochondrial markers at various times during development (1-day eggs; 3-, 6-, 9-week eggs; 16-month old 1st and 2nd instar nymphs). We found evidence of paternal leakage in both reciprocal hybrid crosses in all of these samples. The relative difficulty of detecting paternal mtDNA in the youngest eggs and ease of detecting leakage in older eggs and in nymphs suggests that paternal mitochondria proliferate as the eggs develop. Our data support recent theoretical predictions that paternal leakage may be more common than previously estimated.  相似文献   

8.
Abstract 1. In 2004, Brood X of the periodical cicada (Magicicada spp.) emerged in Delaware. Extensive suburban development and concomitant planting of exotic species has occurred since the previous emergence of Brood X in 1987. 2. Exotic species could suffer extensive damage during years of cicada emergences if they are preferred for oviposition. Alternately, a shortage of suitable plant hosts may negatively affect remaining cicada populations. 3. We determined if the periodical cicada, Magicicada septendecim, preferred to oviposit on native or exotic woody plant species. Potential hosts were divided into three groups and planted in a randomised design near a likely source of cicadas. The first group, Natives, included 15 species native to Delaware. The second group, Non‐natives, included 15 exotic species that had a native congener represented in the Native group. The final group, Aliens, included 13 exotic species that did not have a native congener. 4. Based on observations of 428 plants, cicadas were more likely to oviposit on Natives or Non‐natives, which did not differ from each other in this measure, than on Aliens. Non‐natives had more oviposition holes per metre than Natives, which had more holes per metre than Aliens. The likelihood of stem flagging was lowest on Alien species; the percentage of the total plant that flagged was greatest for Natives. Plant morphology also influenced host preference and likelihood of flagging. 5. Taking plant morphology into consideration, we speculate that the evolutionary history between periodical cicadas and potential hosts is an important component of host preference.  相似文献   

9.
Mating aggregations of three species of periodical cicadas were monitored during the emergence of Brood XIX at a 16-ha study site in northwest Arkansas, May–June 1985. Magicicada tredecassiniappeared first and formed the most choruses. M. tredecimand M. tredeculachoruses formed next, and M. tredeculachoruses outnumbered those of M. tredecim.Of the 268 choruses seen, 84% were composed of M. tredecassini. M. tredecassiniwere often found chorusing in the same trees with the other two species. Such multispecies mating aggregations apparently are unique to periodical cicadas. Choruses were dynamic with respect to their locations and durations. Initially, choruses were located near areas of high cicada emergence densities. One week later, cicadas chorused in trees throughout the forest and at the forest edge. Many choruses were seen only once at a location. Although cicadas chorused for almost 4 weeks, individual choruses persisted only approximately 8 days, on average. Sound intensities under chorus centers ranged from 50 to 80 dh and were correlated with arena sizes during times of peak chorus activity. No distinct habitat preferences of the three species were observed, however, the tree species used by chorusing cicadas differed among the species.  相似文献   

10.
Seven species in three species groups (Decim, Cassini and Decula) of periodical cicadas (Magicicada) occupy a wide latitudinal range in the eastern United States. To clarify how adult body size, a key trait affecting fitness, varies geographically with climate conditions and life cycle, we analysed the relationships of population mean head width to geographic variables (latitude, longitude, altitude), habitat annual mean temperature (AMT), life cycle and species differences. Within species, body size was larger in females than males and decreased with increasing latitude (and decreasing habitat AMT), following the converse Bergmann's rule. For the pair of recently diverged 13‐ and 17‐year species in each group, 13‐year cicadas were equal in size or slightly smaller on average than their 17‐year counterparts despite their shorter developmental time. This fact suggests that, under the same climatic conditions, 17‐year cicadas have lowered growth rates compared to their 13‐years counterparts, allowing 13‐year cicadas with faster growth rates to achieve body sizes equivalent to those of their 17‐year counterparts at the same locations. However, in the Decim group, which includes two 13‐year species, the more southerly, anciently diverged 13‐year species (Magicicada tredecim) was characterized by a larger body size than the other, more northerly 13‐ and 17‐year species, suggesting that local adaptation in warmer habitats may ultimately lead to evolution of larger body sizes. Our results demonstrate how geographic clines in body size may be maintained in sister species possessing different life cycles.  相似文献   

11.
We studied the trade-off between traits that function in mate attraction and those that function in enemy avoidance by contrasting features of acoustic communication in cicadas differentially at risk to predators in the same environment. Two genera of North American cicadas were studied: Magicicada and Tibicen. Magicicada species of periodical cicadas, with 17-year life cycles, seek mates in dense aggregations of calling males that are made possible by the relative ineffectiveness of predators to control their numbers. During the breeding season, Magicicada are so abundant that they satiate their predators. From their relative freedom from predation, it is to be expected that traits for attracting mates are emphasized in Magicicada compared with the more solitary genus Tibicen , which reproduce at much lower densities. Males of solitary species are expected to sing more loudly and at low pitch because both features enhance long-distance transmission. These two features were confirmed by measurement. Magicicada septendecim appears to be the most divergent species, evolutionarily, in terms of an unusually sharply tuned sound resonating system, low resonant frequency, and quietness of its song that cannot be entirely explained by body size. These characteristics represent adaptations to the problem of communicating unambiguously to females at close range in a loud and heterogeneous sound environment. Sensitivity to predators, parasitoids, and congeneric species may also have shaped the evolution of their communication systems.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 15–24.  相似文献   

12.
Life history evolution spurred by post‐Pleistocene climatic change is hypothesized to be responsible for the present diversity in periodical cicadas (Magicicada), but the mechanism of life cycle change has been controversial. To understand the divergence process of 13‐year and 17‐year cicada life cycles, we studied genetic relationships between two synchronously emerging, parapatric 13‐year periodical cicada species in the Decim group, Magicicada tredecim and M. neotredecim. The latter was hypothesized to be of hybrid origin or to have switched from a 17‐year cycle via developmental plasticity. Phylogenetic analysis using restriction‐site‐associated DNA sequences for all Decim species and broods revealed that the 13‐year M. tredecim lineage is genomically distinct from 17‐year Magicicada septendecim but that 13‐year M. neotredecim is not. We detected no significant introgression between M. tredecim and M. neotredecim/M. septendecim thus refuting the hypothesis that M. neotredecim are products of hybridization between M. tredecim and M. septendecim. Further, we found that introgressive hybridization is very rare or absent in the contact zone between the two 13‐year species evidenced by segregation patterns in single nucleotide polymorphisms, mitochondrial lineage identity and head width and abdominal sternite colour phenotypes. Our study demonstrates that the two 13‐year Decim species are of independent origin and nearly completely reproductively isolated. Combining our data with increasing observations of occasional life cycle change in part of a cohort (e.g. 4‐year acceleration of emergence in 17‐year species), we suggest a pivotal role for developmental plasticity in Magicicada life cycle evolution.  相似文献   

13.
Abstract. Acoustic mate-attracting signals of related sympatric, synchronic species are always distinguishable, but those of related allopatric species sometimes are not, thus suggesting that such signals may evolve to "reinforce" premating species isolation when similar species become sympatric. This hypothesis predicts divergences restricted to regions of sympatry in partially overlapping species, but such "reproductive character displacement" has rarely been confirmed. We report such a case in the acoustic signals of a previously unrecognized 13-year periodical cicada species, Magicicada neotredecim , described here as a new species (see Appendix). Where M. neotredecim overlaps M. tredecim in the central United States, the dominant male call pitch (frequency) of M. neotredecim increases from approximately 1.4 kHz to 1.7 kHz, whereas that of M. tredecim remains comparatively stable. The average preferences of female M. neotredecim for call pitch show a similar geographic pattern, changing with the call pitch of conspecific males. Magicicada neotredecim differs from 13-year M. tredecim in abdomen coloration, mitochondrial DNA, and call pitch, but is not consistently distinguishable from 17-year M. septendecim ; thus, like other Magicicada species, M. neotredecim appears most closely related to a geographically adjacent counterpart with the alternative life cycle. Speciation in Magicicada may be facilitated by life-cycle changes that create temporal isolation, and reinforcement could play a role by fostering divergence in premating signals prior to speciation. We present two theories of Magicicada speciation by life-cycle evolution: "nurse-brood facilitation" and "life-cycle canalization."  相似文献   

14.
Periodical cicadas have proven useful in testing a variety of ecological and evolutionary hypotheses because of their unusual life history, extraordinary abundance, and wide geographical range. Periodical cicadas provide the best examples of synchronous periodicity and predator satiation in the animal kingdom, and are excellent illustrations of habitat partitioning (by the three morphologically distinct species groups), incipient species (the year classes or broods), and cryptic species (a newly discovered 13-year species, Magicicada neotredecim). They are particularly useful for exploring questions regarding speciation via temporal isolation, or allochronic speciation. Recently, data were presented that provided strong support for an instance of allochronic speciation by life-cycle switching. This speciation event resulted in the formation of a new 13-year species from a 17-year species and led to secondary contact between two formerly separated lineages, one represented by the new 13-year cicadas (and their 17-year ancestors), and the other represented by the pre-existing 13-year cicadas. Allozyme frequency data, mitochondrial DNA (mtDNA), and abdominal colour were shown to be correlated genetic markers supporting the life-cycle switching/allochronic speciation hypothesis. In addition, a striking pattern of reproductive character displacement in male call pitch and female pitch preference between the two 13-year species was discovered. In this paper we report a strong association between calling song pitch and mtDNA haplotype for 101 individuals from a single locality within the M. tredecim/M. neotredecim contact zone and a strong association between abdomen colour and mtDNA haplotype. We conclude by reviewing proposed mechanisms for allochronic speciation and reproductive character displacement.  相似文献   

15.
Courtship behaviour of two species of periodical cicadas, Magicicada septendecim and M. cassini, was studied in the field during the 1970, 1973, and 1974 emergences of these insects. In areas where both species were courting there were differences in both male and female courtship patterns, both in acoustic and behavioural components. Experiments with models showed that male M. septendecim were more likely to court crude models of females than were M. cassini males. When females were ‘courted’ with models that could imitate some of male courtship, they were more receptive when the models' ‘songs’ were those of conspecific males. Acoustic differences between species are probably used by females in mate selection, maintaining species separation even in areas where the two species overlap in both space and time.  相似文献   

16.
Summary Predation by red-winged blackbirds Agelaius phoeniceus L. on 13-year periodical cicadas (Magicicada spp.) and reactions by periodical cicadas to predators were studied during emergence of Brood XIX during summer of 1985 in northwestern Arkansas (USA). Emergences of periodical cicadas are classic examples of predator satiation due to high local densities of cicadas and birds are the major predators of adult periodical cicadas. Reactions of periodical cicadas to predators were assessed by recording behaviors exhibited by cicadas when approached in trees by a human hand during the 3-week period of peak adult densitics. Most male cicadas made a noise in association with escape behaviors when approached, and 50% of the females, which are silent, attempted escape behaviors. Observations of predation attempts on cicadas by red-winged blackbirds were made during the period of peak predation pressure. Red-winged blackbirds spent less time searching for cicadas over that 2-week period of increasing predation pressure, and became increasingly efficient at capturing cicadas. Handling time of cicadas by red-winged blackbirds increased by about 20 seconds over that period, as blackbirds spent more time consuming female cicadas. The flysquawk response, used only by male cicadas, was effective in deterring red-winged blackbirds; only 5% of the attacks by blackbirds were successful when that behavior was exhibited. All cicadas that remained motionless and silent when approached by blackbirds were captured and consumed. Because females remained inactive when approached more often than did males, blackbirds may have consumed more female cicadas. Changes that appeared in reactions of preiodical cicadas to the model predator and to the attacks of blackbirds reflect both changes in the sex ratio of the cicada populations and changes in behaviors of cicadas associated with mating and egg laying. The loud noise made by male periodical cicadas at mating centers did not appear to deter predation by blackbirds. Changes in the behavior of blackbirds that appeared to be in association with greater predation on female periodical cicadas relates directly to aspects of foraging theory, particularly predictions concerning more selective foraging during periods of abundant food resources.  相似文献   

17.
Periodical cicadas in the genus Magicicada have unusually long life cycles for insects, with periodicities of either 13 or 17 years. Biologists have explained the evolution of these prime number period lengths in terms of resource limitation, enemy avoidance, hybridization and climate change. Here, I question two aspects of these explanations: that the origin of the life cycles was associated with Pleistocene ice age events, and that they evolved from shorter life cycles through the lengthening of nymphal stages in annual increments. Instead, I suggest that these life cycles evolved earlier than the Pleistocene and involved an abrupt transition from a nine-year to a 13-year life cycle, driven, in part, by interspecific competition.  相似文献   

18.
The periodical cicadas of the genus Magicicada (including M. septendecim, M. cassini, and M. septendecula) have the longest juvenile life span of any insect, living underground for 13 or 17 years and feeding exclusively on root xylem fluids. Due to their inaccessible life cycles very little is known about cicada nutrition, despite the fact that members of Magicicada can achieve a very large biomass in woodland habitats east of the Mississippi and hence constitute a major part of the ecosystem where they occur in high densities. Live cicadas were collected at two sites in early June of 2004, during the emergence of Brood X (both M. septendecim and M. cassini were recovered). We used a combination of stable isotopic measurements (δ15N and δ13C) and multivariate statistical techniques to test for differences in resource acquisition among the cicada species and sexes collected at two locations within the 17-year periodical Brood X range. The amino acid constituents of cicada chitin and organs, plus xylem extracted from a deciduous sapling, were also analyzed. The data show that male and female cicadas have different carbon fractionations, which could reflect differential resource utilization due to oviposition in females. Several essential amino acids for the cicada were absent in xylem. Carbon-isotopic composition of all amino acids in the cicadas was distinctly different from the limited set measured in the xylem. Because of the differences in isotopic composition, we conclude that amino acids were synthesized de novo rather than incorporated directly, most likely produced by endosymbiotic bacteria.  相似文献   

19.
Mitochondrial DNA (mtDNA) haplotypes were determined for 118 individuals of 13-and 17-year periodical cicadas (genus Magicicada) collected from 16 localities throughout the Midwest and eastern United States. Two distinct mtDNA lineages, identified as A and B, differ by 2.5% based on analysis of fragment patterns and restriction maps. Observed levels of mtDNA diversity within each lineage are low compared to estimates for other taxa. The two lineages are regionally segregated, with the boundary line occurring at a latitude of approximately 33° North. The levels of mtDNA diversity and population genetic structure differ within the two lineages. There is a remarkably low level of mean mtDNA divergence and no genetic structure in lineage A, whereas lineage B exhibits an order of magnitude higher level of mtDNA diversity and significant genetic structure among sampled populations. The low level of mtDNA diversity in cicadas may be attributed to (1) a population bottleneck that most likely occurred during the Pleistocene, (2) recent colonization following the retreat of the glaciers and the expansion of deciduous forests, and/or (3) high among-family reproductive variance (as a consequence of large population size, high fecundity, aggregative behavior of adults, and clumping of eggs). The difference in mtDNA diversity and population genetic structure between the lineages suggests that they experienced different biogeographic histories; we relate this to Pleistocene changes.  相似文献   

20.
Periodical cicadas are known for unusually long and prime-numbered life cycles (13 and 17 years) for insects. To explain the evolution of prime-numbered reproductive intervals (life cycles), the hybridization hypothesis claims that prime numbers greatly reduce the chance of hybridization with other life cycles. We investigate the hybridization hypothesis using a simulation model. This model is a deterministic, discrete population model with three parameters: larval survival per year, clutch size, and emergence success. Reproductive intervals from 10 years to 20 years compete for survival in the simulations. The model makes three key assumptions: a Mendelian genetic system, random mating among broods of different life-cycle lengths, and integer population sizes. Longer life cycles have larger clutch sizes but suffer higher total mortality than shorter life cycles. Our results show that (1) nonprime-numbered reproductive intervals disappear rapidly in comparison to the selection among the various prime-numbered life cycles, (2) the selection of prime-numbered intervals happens only when populations are at the verge of extinction, and (3) the 13- and 17-year prime phenotypes evolve under certain conditions of the model and may coexist. The hybridization hypothesis is discussed in light of other hypotheses for the evolution of periodical cicada life cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号