首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect immunocytochemical tests were used at the light- and electron-microscopic levels to investigate peripheral chemical synapses in identified sensory neurons of two types of cuticular mechanosensors in the spider Cupiennius salei Keys.: (1) in the lyriform slit-sense organ VS-3 (comprising 7–8 cuticular slits, each innervated by 2 bipolar sensory neurons) and (2) in tactile hair sensilla (each supplied with 3 bipolar sensory cells). All these neurons are mechanosensitive. Application of a monoclonal antibody against Drosophila synapsin revealed clear punctate immunofluorescence in whole-mount preparations of both mechanoreceptor types. The size and overall distribution of immunoreactive puncta suggested that these were labeled presynaptic sites. Immunofluorescent puncta were 0.5–6.8 μm long and located 0.5–6.6 μm apart from each other. They were concentrated at the initial axon segments of the sensory neurons, while the somata and the dendritic regions showed fewer puncta. Western blot analysis with the same synapsin antibody against samples of spider sensory hypodermis and against samples from the central nervous system revealed a characteristic doublet band at 72 kDa and 75 kDa, corresponding to the apparent molecular mass of synapsin in Drosophila and in mammals. Conventional transmissionelectron-microscopic staining demonstrated that numerous chemical synapses (with at least 2 vesicle types) were present at these mechanosensory neurons and their surrounding glial sheath. The distribution of these synapses corresponded to our immunofluorescence results.Ultrastructural examination of anti-synapsin-stained neurons confirmed that reaction product was associated with synaptic vesicles. We assume that the peripheral synaptic contacts originate from efferents that could exert a complex modulatory influence on mechanosensory activity. Received: 20 April 1998 / Accepted: 18 August 1998  相似文献   

2.
Peripherally located parts of spider mechanosensory neurons are modulated by several neurotransmitters released from apposed efferent fibers. Activities of acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT) and ACh degrading enzyme acetylcholine esterase (AChE) were previously found in some efferent fibers. ChAT activity was also present in all the mechanosensory neurons, while AChE activity was only found in some. We show that spider mechanosensory neurons and probably some efferent neurons are immunoreactive to a monoclonal antibody against muscarinic ACh receptors (mAChRs). However, application of muscarinic agonists did not change the physiological responses or membrane potentials of neurons in the lyriform organ VS-3. Similarly, the sensitivities of the neurons of trichobothria (filiform hairs) remained unchanged after application of these agonists. Therefore, activation of mAChRs may only modulate the function of spider mechanosensory neurons indirectly, for example, by affecting the release of other transmitter(s). However, a subgroup of VS-3 neurons was inhibited by ACh, which also depolarized the membrane similar to these neurons’ responses to GABA, suggesting that ACh activates anion channels in these neurons. Interestingly, all of the neurons responding to ACh were the rapidly adapting Type A neurons that were previously shown to express AChE activity.  相似文献   

3.
We have examined the requirement for normal acetylcholine metabolism in the formation and maintenance of the larval and adult central nervous system in Drosophila melanogaster. By using mutations at the Ace and Cha loci, which respectively encode the degradative and synthetic enzymes for acetylcholine (ACh), acetylcholinesterase (AChE), and choline acetyltransferase (ChAT), we have been able to disrupt acetylcholine metabolism in situ. An ultrastructural analysis of embryonic nervous tissue lacking either enzymatic function has indicated that while neither function is required for the formation of the larval central nervous system, each is required for the subsequent maintenance of its structural integrity and function. Using temperature sensitive mutations at the Cha locus, the normal developmental profile of ChAT activity during the late larval and pupal stages was disrupted. Subsequent examination of the morphology and behavior of the treated animals has indicated that normal acetylcholine metabolism is not required for the initial formation of the adult nervous system, but is required for the subsequent maintenance of its structural integrity and function. The results obtained in these studies are discussed with respect to data presented on the adult distribution of the cholinergic markers' AChE activity and ChAT immunoreactivity. The projections of adult peripheral neurons innervating Ace+ tissue from Ace cuticular clones has been examined to address the nature of the structure of Ace neuropil. Normal projections are apparently achieved and maintained, suggesting that the defects seen in adult Ace mosaics arise as an aberrant intracellular organization of morphologically normal cells.  相似文献   

4.
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.  相似文献   

5.
We describe hitherto unknown mechanoreceptors on the anterior spinnerets of the spiderCupiennius salei. These receptors are found at the base of the spigots of the major ampullate glands which produce the dragline used by the spider as a safety thread in various behavioral situations. There are 40–60 mechanoreceptors associated with two spigots of each anterior spinneret. They are likely to provide information on the forces pulling on the dragline and also on its orientation in space. A single sensillum consists of a hole in the cuticle covered by a thin cuticular membrane. It much resembles spider slit sensilla, which are known to detect strains in the exoskeleton. Each sensillum is supplied by two dendrites most likely belonging to two bipolar sensory cells. One of the dendrites ends at the covering membrane and the other more proximally. The sensilla are arranged with their long axes roughly parallel to the circumference of the spigots. External forces, transmitted by the dragline, result in deformation of the central part of the cuticular plate at the base of the spigots and thus in stimulation of the sensilla. This is shown electrophysiologicallly. Considering their morphology, topography, and electrophysiology, these mechanoreceptors are suggested to be important in the sensory control of dragline release by the spider.  相似文献   

6.
Five types of sensilla are situated on the apical area of the labial and maxillary palpi and galea of Cicidela sexguttata. Large, conical, and peg-like sensilla are in rows on the central region of each palpus. These sensilla have a hollow cuticular peg, with an apical pore and multi-innervation. This central region of palpal sensilla is surrounded by campaniform sensilla that are disc-shaped and small conical peg sensilla. A similar type of conical sensillum as the found in the palpal central region is situated around the periphery of the palpal apex and apex of the galea. This conical peg sensillum is located in a shallow depression and is structurally similar to the other peg sensilla, but it has a mechanoreceptor neuron attached to the cuticular base of the sensillum. A long, single, trichoid sensillum is situated in the center of the galea and is hollow, thick-walled, porous, and multi-innervated. The apices of the palpi and galea have a large number of dermal gland openings that actively secrete a substance during the feeding process of the tiger beetle. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Histamine is known to be the neurotransmitter of insect photoreceptors. Histamine-like immunoreactivity is also found in a number of interneurons in the central nervous system of various insects. Here, we demonstrate by immunohistochemical techniques that, in Drosophila melanogaster (Acalypterae), most or all mechanosensory neurons of imaginal hair sensilla selectively bind antibodies directed against histamine. The histamine-like staining includes the cell bodies of these neurons as well as their axons, which form prominent fibre bundles in peripheral nerves, and their terminal projections in the central neuropil of head and thoracic ganglia. The specificity of the immunostaining is demonstrated by investigating a Drosophila mutant unable to synthesize histamine. Other mechanosensory organs, such as campaniform sensilla or scolopidial organs, do not stain. In the calypteran flies, Musca and Calliphora, we find no comparable immunoreactivity associated with either hair sensilla or the nerves entering the central nervous system, observations in agreement with earlier studies on Calliphora. Thus, histamine seems to be a major mechanosensory transmitter candidate of the adult nervous system of Drosophila, but apparently not of Musca or Calliphora.  相似文献   

8.
The cuticular sensory receptors that are found on the apex of the labium of hemipterans play an important role in their feeding behavior. In this study we describe the ultrastructure, number, and distribution of sensilla on the labium apex of the chinch bug, Blissus leucopterus leucopterus. Each apical field of sensilla on the labium contains 11 uniporous peg sensilla and one sensillum chaeticum. The uniporous peg sensilla are innervated by 4–5 bipolar neurons that send dendrites in the lumen of each peg. Three neurons are associated with each sensillum chaeticum, two neurons have dendrites in the lumen of the sensillum, and the third dendrite ends in a tubular body at the base of the sensillum. Behavioral tests that involve chemical blockage of the sensory receptors show the importance of the labial sensilla in feeding behavior. Both morphological and behavioral evidence indicate that the labial sensilla have a chemosensitive function.  相似文献   

9.
The aim of this work was to investigate the olfactory system of the walking stick insect, Carausius morosus. Morphological, ultrastructural and immunocytochemical studies of adult female antennae were conducted by scanning and transmission electron microscopy. Extensive cross-section series were made through the last antennal segment to define the cuticular apparatus, wall pore distribution and the number of innervating receptor neurons of each sensillum type. Single-walled wall pore sensilla occur in three subtypes: (i) with 27 or 28 branched receptor neurons, (ii) with two branched neurons and (iii) with one or two unbranched neurons, respectively. Double-walled wall pore sensilla were found in two subtypes with spoke channels, one with four unbranched neurons, the other with two unbranched neurons. One terminal pore sensillum was found, showing two cavities within the hair and being innervated by six sensory cells. Immunocytochemical experiments were performed to show the localization of a 19 kDa soluble protein found in the chemosensory organs of C. morosus. This protein shows an amino acid sequence homologous to the family of chemosensory proteins (CSP). The polyclonal antibody raised against the purified protein (CSP-cmA) showed, for the first time in CSPs, a strong labeling in olfactory sensilla, specifically in the sensillum lymph surrounding the dendritic branches of SW-WP sensilla and in the uninnervated lumen between the two concentric walls of DW-WP type 1 sensilla.  相似文献   

10.
There are 36 to 42 taste bristles on each half of the labellum of Drosophila melanogaster; most of them are two-pronged with a pouch between them. Some end bluntly with a pore at the tip. Each taste-bristle has two lumina: one is circular, the other crescent-like in cross section. In most bristles four dendrites of chemoreceptor neurons run along the circular lumen. In five to seven taste-bristles only two chemoreceptor neurons are found. A mechanoreceptor neuron sends a dendrite to the base of each taste-bristle. The dendrites are surrounded by four concentrically-arranged sheath cells. The inner cell secretes the cuticular sheath; cells II and III are presumably two trichogens, one secreting the bristle material around the circular lumen, the other around the crescent-like lumen. Cell IV, especially rich in bundles of microtubules, secretes the cuticle of the socket, and corresponds to the tormogen. The neurons have the typical structure found in insect sensilla. In many sensilla one neuron is less electron-dense than the others and may be the water-sensor. On the medial side of the labellum between the pseudotracheae are rows of taste pegs covered by folds. In each peg one chemoreceptor and one mechanoreceptor are found. The number of axons in each labial nerve agrees with the total number of dendrites in all taste organs of each lobe.  相似文献   

11.
The autonomic nervous system consists of sympathetic and parasympathetic nerves, which functionally antagonize each other to control physiology and homeostasis of organs. However, it is largely unexplored how the autonomic nervous system is established during development. In particular, early formation of parasympathetic network remains elusive because of its complex anatomical structure. To distinguish between parasympathetic (cholinergic) and sympathetic (adrenergic) ganglia, vesicular acetylcholine transporter (VAChT) and choline O‐acetyltransferase (ChAT), proteins associated with acetylcholine synthesis, are known to be useful markers. Whereas commercially available antibodies against these proteins are widely used for mammalian specimens including mice and rats, these antibodies do not work satisfactorily in chickens, although chicken is an excellent model for the study of autonomic nervous system. Here, we newly raised antibodies against chicken VAChT and ChAT proteins. One monoclonal and three polyclonal antibodies for VAChT, and one polyclonal antibody for ChAT were obtained, which were available for Western blotting analyses and immunohistochemistry. Using these verified antibodies, we detected cholinergic cells in Remak ganglia of autonomic nervous system, which form in the dorsal aspect of the digestive tract of chicken E13 embryos. The antibodies obtained in this study are useful for visualization of cholinergic neurons including parasympathetic ganglia.  相似文献   

12.
The distribution and chemical neuroanatomy of nervous elements and certain pharmacological–physiological characteristics of the innervation of the body wall in earthworms are described. Solitary sensory bipolar cells can be found among the epithelial cells. These bipolar cells contain serotonin, tyrosine hydroxylase, histamine, gamma-amino-butyric acid (GABA), Eisenia tetradecapeptide, proctolin or rhodopsin in various combinations. In the body wall, the plexus submuscularis is composed of nerve fibres only, whereas the plexus subepithelialis and muscularis also contain solitary nerve cells. These cells display histamine, GABA or neuropeptide Y immunoreactivity. The fibres of the three plexuses are reactive to serotonin, histamine, Eisenia tetradecapeptide, proctolin, GABA and neuropeptide Y antibodies. FMRFamide-immunoreactive fibres of the plexus muscularis originate from the central nervous system, whereas axons containing the other studied molecules are derived from both peripheral and central structures. High pressure liquid chromatography assays have revealed serotonin, dopamine and histamine in the body wall. Contractions of the body wall musculature can be elicited with serotonin and FMRFamide. Serotonin-evoked contractions are suppressed by the application of GABA. Serotonin acts both directly on the muscle cell receptors and indirectly through initiating transmitter release from the nervous elements, whereas the FMRFamide-induced contractions seem to be mediated through the muscle cell receptors only. The pharmacological profiles of the serotonin and GABA receptors resemble those of the vertebrate 5-HT3 and GABAB receptor types. Our findings indicate that both the sensory and efferent system of the annelid body wall operate by means of a variety of neuroactive compounds, suggesting a complex role of signalling systems in the regulation of this organ.This work was supported by the Hungarian Scientific Research Fund (OTKA; grant nos. T 34106 and T 34160). Márta Wilhelm is in receipt of a János Bolyai Scholarship.  相似文献   

13.
松褐天牛六种类型的触角感器的超微结构   总被引:2,自引:0,他引:2  
利用扫描电镜和透射电镜对松褐天牛Monochamus alternatus Hope不同类型触角感器的超微结构进行了观察和研究。在松褐天牛触角上存在6种类型的感器:机械感器、锥形感器、毛型感器、耳形感器、刺形感器和栓锥形感器。机械感器壁厚无孔,淋巴腔中无树突。锥形感器壁薄多孔,有50多个树突分支,每个分支有1~10个微管。毛型感器单壁,壁上有小孔,孔数相对较少,感器内树突1~8个不等,树突内含不同数量的微管。耳形感器,壁薄多孔,内部有少于5个的树突分支,树突内含有数量不等的微管。刺形感器又分为2个亚型:Ⅰ型壁上具纵脊无孔,顶端有孔;Ⅱ型壁上无脊无孔,顶端具单孔。刺形感器Ⅰ型和Ⅱ型均壁厚无孔,树突鞘一直通到顶端小孔。栓锥形感器上半部具纵脊无孔,下端有少量孔,顶端具三瓣状开口的孔。对感受器功能的讨论认为:机械感器不是化学感器;锥形、毛型和耳形感器是嗅觉感器;刺形和栓锥形感器可能是接触化学(味觉)感器。  相似文献   

14.
Abstract. Netrins are secreted molecules capable of attracting or repelling growing axons. They and their receptors, along with other netrin-interacting proteins, are widely conserved among animals from a broad range of phyla. We have raised and purified an antibody against a recently cloned leech netrin, which has allowed us to characterize embryonic netrin expression by cells in peripheral tissues and in the central nervous system. During early gangliogenesis, netrin expression was detected at particularly high levels in five bilateral pairs of central neurons. Towards the end of the period of axonal outgrowth, netrin expression was observed to be restricted to only six central neurons, comprising two bilateral pairs and two unpaired cells. A pair of netrin-producing central neurons, the bipolar cells, was identified by their expression of the antigen recognized by the monoclonal antibody Laz1-1. Double staining of sensory afferents from segmental sensilla with the monoclonal antibody Lan3-2 and the bipolar cells with the netrin antibody revealed that the terminals of these afferents grow up to the bipolar cells and turn anteriorly or posteriorly, without extending any further medially. Peripheral netrin expression was found to be restricted to longitudinal muscle cells in the ventral half of the body wall. Extracellular, secreted netrin was detected in a broad longitudinal stripe located symmetrically with respect to the ventral midline. The pattern of expression of netrin in leech embryos is consistent with observed expression patterns in other animals, suggesting that developmental netrin functions are conserved among all bilateral animals.  相似文献   

15.
Neuronal development of the majority of trochozoan animals with biphasic pelago-bentic life cycle starts from transient peripheral neurons, which do not belong to the central nervous system and are mainly located in the apical sensory organ and in the hyposphere. Some of these neurons are pioneer and send neurites that form a scaffold upon which the adult central nervous system later develops. In representative species of molluscs and polychaetes, immunolabelling with the antibodies against neurotransmitters serotonin and FMRFamide, and acetylated α-tubulin revealed that the structure of almost all early peripheral neurons is typical for sensory, most probably chemosensory cells: flask shape, and cilia at the end of the apical dendrite or inside the distal ampoule. Morphology, transmitter specificity, location and projections of the early sensory cells differ in trochophores of different species thus suggesting different origin of these cells. In polychaete larvae, pharmacological inhibition of serotonin synthesis in early peripheral neurons did not affect the development, whereas its increase resulted in developmental arrest and neural malformations, suggesting that early peripheral sensory neurons are involved in developmental regulation.  相似文献   

16.
Antennal sensory neurons of Manduca sexta emerge from epidermal cells that also give rise to sheath cells surrounding the peripheral parts of the neurons and to glial cells that enwrap the sensory axons in the antennal nerve. Reciprocal interactions between sensory neurons and glial cells are believed to aid in axon growth and guidance, but the exact nature of these interactions is not known. We investigated the possibility of cholinergic interactions in this process by locating muscarinic acetylcholine receptors (mAChRs) and choline acetyltransferase (ChAT) enzyme in cultured antennal sensory neurons and non-neural cells. ChAT and mAChRs were present in the sensory neurons from the first day in culture. Therefore, the sensory neurons are probably cholinergic, as previously suggested, but they may also be controlled by ACh. In 7-day-old cultures a subgroup of small non-neural cells with processes expressed ChAT activity, and in 14-day-old cultures non-neural cells that formed lamellipodia and scaffoldlike structures on the culture substrate were labeled with ChAT antibody. mAChR activity was detected in similar non-neural cells but only in areas surrounding the nuclei. In addition, mAChRs were found in flat lamellipodia and filopodia forming cells that were present in 1-day-old cultures and grew in size during the 2 week investigation period. These findings suggest muscarinic cholinergic interactions between the neural and non-neural cells during the development of Manduca antenna.  相似文献   

17.
Choline acetyltransferease (ChAT) is the enzyme catalyzing the biosynthesis of acetylcholine and is considered to be a phenotypically specific marker for cholinergic neurons. We have examined the distribution of ChAT-expressing neurons in the larval nervous system of Drosophila melanogaster by three different but complementary techniques: in situ hybridization with a cRNA probe to ChAT messenger RNA, immunocytochemistry using a monoclonal anti-ChAT antibody, and X-gal staining of transformed animals carrying a reporter gene composed of 7.4 kb of 5 flanking DNA from the ChAT gene fused to a lacZ reporter gene. All three techniques demonstrated ChAT-expressing neurons in the larval visual system. In embryos, the photoreceptor organ (Bolwig's organ) exhibited strong cRNA hybridization signals. The optic lobe of late third-instar larvae displayed ChAT immunoreactivity in Bolwig's nerve and a neuron close to the insertion site of the optic stalk. This neuron's axon ran in parallel with Bolwig's nerve to the larval optic neuropil. This neuron is likely to be a first-order interneuron of the larval visual system. Expression of the lacZ reporter gene was also detected in Bolwig's organ and the neuron stained by anti-ChAT antibody. Our observations indicate that acetylcholine may be a neurotransmitter in the larval photoreceptor cells as well as in a first-order interneuron in the larval visual system of Drosophila melanogaster.This work was supported by a grant from the National Institute of Neurological Disorders and Stroke.  相似文献   

18.
Keil TA 《Tissue & cell》1989,21(1):139-151
The flagellar antenna of the male hawkmoth Manduca sexta carries about 42,000 pheromone-sensitive sensilla trichodea, which are arranged in 'baskets' on the single segments. Each sensillum consists of a cuticular hair up to 500 mum long and is innervated by two bipolar sensory neurons. Each neuron sends an unbranched dendrite into the hair shaft. The dendrite is subdivided by a short ciliary region into an inner and an outer segment. The inner segment is especially rich in smooth vesicles, which accumulate beneath the ciliary region where they seem to fuse with the dendritic membrane. The outer dendritic segment often shows conspicuous 'beads' along its length. Three auxiliary, or enveloping, cells belong to each adult sensillum. These are the thecogen, the trichogen, and the 'outer' cell. Most probably, the latter is not homologous with the 'traditional' tormogen cell from a genealogical point of view.  相似文献   

19.
THE FINE STRUCTURE OF COCKROACH CAMPANIFORM SENSILLA   总被引:5,自引:2,他引:3       下载免费PDF全文
Campaniform sensilla on cockroach legs provide a good model system for the study of mechanoreceptive sensory transduction. This paper describes the structure of campaniform sensilla on the cockroach tibia as revealed by light- and electron-microscopy. Campaniform sensilla are proprioceptive mechanoreceptors associated with the exoskeleton. The function of each sensillum centers around a single primary sense cell, a large bipolar neuron whose 40 µ-wide cell body is available for electrophysiological investigation with intracellular microelectrodes. Its axon travels to the central nervous system; its dendrite gives rise to a modified cilium which is associated with the cuticle. The tip of the 20 µ-long dendrite contains a basal body, from which arises a 9 + 0 connecting cilium. This cilium passes through a canal in the cuticle, and expands in diameter to become the sensory process, a membrane-limited bundle of 350–1000 parallel microtubules. The tip of the sensory process is firmly attached to a thin cap of exocuticle; mechanical depression of this cap, which probably occurs during walking movements, effectively stimulates the sensillum. The hypothesis is presented that the microtubules of the sensory process play an important role in mechanoelectric transduction in cockroach campaniform sensilla.  相似文献   

20.
Each antenna of both sexes of adult Rhodnius prolixus has approximately 570 mechanosensitive neurons that innervate five morphologic types of cuticular mechanosensilla: campaniform sensilla, tapered hairs, trichobothria, and type I and type II bristle sensilla. Each campaniform sensillum and tapered hair is presumably innervated by one mechanosensitive bipolar neuron and probably functions in proprioception. The campaniform sensilla being located at the base of the scape could monitor the position of the antenna. Tapered hairs are found at the distal margin of flagellar segment I and projecting laterally from the bases of the pedicel and scape. They probably provide information about the relative positions of the antennal segments. Seven trichobothrium are located on the pedicel and three on flagellar segment I. Each trichobothrium has a long filamentous hair inserted into the base of a socket that extends inwardly as a cuticular tube and is innervated by one bipolar neuron with a tublar body, a parallel arrangement of microtubules associated with electron-dense material. The trichobothria may respond to small variations in air currents. Type I bristles occur at the base of the antenna and are the most numerous type of mechanosensillum; an average of 452 occur on each antenna of females and 440 on males. The bristle is curved toward the antennal shaft and is serrated distally. Type II bristles are located distally and are the second most numerous type of mechanosensillum; an average of 88 were counted on each antenna of females and 94 on males. The type II bristle is straight with small, longitudinal, external grooves and projects laterally from the antennal shaft. Each type I and II bristle sensillum is innervated by a bipolar neuron whose dendrite is divided into an inner and outer segment. The outer segment is encased by a dendritic sheath which may be highly convoluted and distally contains a tubular body. Two sheath cells are associated with each sensillum. Both types of bristle sensilla have a tactile function. The tubular bodies of both types of bristle sensilla have a complex structure indicating that they are very sensitive. Variations in the amount and arrangement of the electron-dense material at the tip of the tubular bodies may reflect differences in viscoelastic properties that underlie functional characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号