首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

2.
The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.  相似文献   

3.
4.
Cook KL  Whitehead TR  Spence C  Cotta MA 《Anaerobe》2008,14(3):172-180
Hydrogen sulfide, produced by sulfate-reducing bacteria (SRB), is one of the most potent malodors emitted from anaerobic swine waste storage systems. However, little is known about the prevalence and diversity of SRB in those systems. The goals of this study were to evaluate the SRB population in swine manure storage systems and to develop quantitative, real-time PCR (QRT-PCR) assays to target four of the SRB groups. Dissimilatory sulfite reductase (DSR) gene sequences were obtained from swine slurry stored in underground pits (43 clones) or in lagoons (34 clones). QRT-PCR assays were designed to target the dsrA gene of four novel groups of SRB. Sequences of dsrA clones from slurry samples grouped with those from three different cultured SRB: Desulfobulbus sp. (46 clones), Desulfovibrio sp. (24 clones and 5 isolates), and Desulfobacterium sp. (7 clones). However, DsrA sequences from swine slurry clones were generally less than 85% similar to those of cultured organisms. SRB from all four targeted SRB groups were detected in underground waste storage pits (6.6 x 10(3)-8.5 x 10(7) dsrA copies mL(-1) slurry), while only two groups of SRB were detected in lagoons (3.2 x 10(5)-2.5 x 10(6) dsrA copies mL(-1) slurry). To date, this is the only study to evaluate the phylogeny and concentration of SRB in any livestock waste storage system. The new QRT-PCR assays should facilitate sensitive, specific detection of the four novel groups of SRB in livestock waste storage systems.  相似文献   

5.
Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  相似文献   

6.
We investigated the phylogenetic diversity of ammonia-oxidizing bacteria (AOB) in Yellow Sea continental shelf sediment by the cloning and sequencing of PCR-amplified amoA and 16S rRNA genes. Phylogenetic analysis of the amoA-related clones revealed that the diversity of AOB was extremely low at the study site. The majority (92.7%) of amoA clones obtained belonged to a single cluster, environmental amoA cluster-3, the taxonomic position of which was previously unknown. Phylogenetic analysis on AOB-specific 16S rRNA gene sequences also demonstrated a very low diversity. All of the cloned 16S rRNA gene sequences comprised a single phylotype that belonged to the members of uncultured Nitrosospira cluster-1, suggesting that AOB belonging to the uncultured Nitrosospira cluster- 1 could carry amoA sequences of environmental amoA cluster-3.  相似文献   

7.
The community structure of sulfate-reducing bacteria (SRB) associated with reed (Phragmites australis) rhizosphere in Lake Velencei (Hungary) was investigated by using cultivation-based and molecular methods. The cultivation methods were restricted to recover lactate-utilizing species with the exclusion of Desulfobacter and some Desulfobacterium species presumably not being dominant members of the examined community. The most-probable-number (MPN) estimations of lactate-utilizing SRB showed that the cell counts in reed rhizosphere were at least one order of magnitude higher than that in the bulk sediment. The number of endospores was low compared to the total SRB counts. From the highest positive dilution of MPN series, 47 strains were isolated and grouped by restriction fragment length polymorphism (RFLP) analysis of the amplified 16S ribosomal RNA (rRNA) and dsrAB (dissimilatory sulfite reductase) genes. Contrary to the physiological diversity of the isolates, the combined results of RFLP analysis revealed higher diversity at species as well as at subspecies level. Based on the partial 16S rRNA sequences, the representative strains were closely affiliated with the genera Desulfovibrio and Desulfotomaculum. The partial dsrAB sequences of the clones, recovered after isolation and PCR amplification of the community DNA, were related to hitherto uncultured species of the genera Desulfovibrio and Desulfobulbus. Nevertheless, the representative of the second largest clone group was shown to be closely affiliated with the sequenced dsrAB gene of a strain isolated from the same environment and identified as Desulfovibrio alcoholivorans. Another clone sequence was closely related to a possible novel species also isolated within the scope of this work.  相似文献   

8.
The community structure of sulfate-reducing bacteria in littoral and profundal sediments of the oligotrophic Lake Stechlin (Germany) was investigated. A collection of 32 strains was isolated from the highest positive dilutions of most-probable-number series, and their partial 16S rRNA gene sequences and genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-PCR were analyzed. The strains fell into eight distinct phylogenetic lineages, and the majority (70%) showed a close affiliation to the genus Desulfovibrio. Most of the remaining strains (22%) were related to the gram-positive Sporomusa and Desulfotomaculum groups. A high redundancy of 16S rRNA gene sequences was found within several of the phylogenetic lineages. This low phylogenetic diversity was most pronounced for the subset of strains isolated from oxic sediment layers. ERIC-PCR revealed that most of the strains with identical 16S rRNA gene sequences were genetically different. Since strains with identical 16S rRNA gene sequences but different genomic fingerprints also differed considerably with respect to their physiological capabilities, the high diversity detected in the present work is very likely of ecological relevance. Our results indicate that a high diversity of sulfate-reducing bacterial strains can be recovered from the natural environment using the established cultivation media. Received: 20 April 1998 / Accepted: 12 June 1998  相似文献   

9.
The genetic heterogeneity of nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in forested upland and marsh soil was investigated using molecular methods. nirK gene fragments could be amplified from both soils, whereas nirS gene fragments could be amplified only from the marsh soil. PCR products were cloned and screened by restriction fragment length polymorphism (RFLP), and representative fragments were sequenced. The diversity of nirK clones was lower than the diversity of nirS clones. Among the 54 distinct nirK RFLP patterns identified in the two soils, only one pattern was found in both soils and in each soil two dominant groups comprised >35% of all clones. No dominance and few redundant patterns were seen among the nirS clones. Phylogenetic analysis of deduced amino acids grouped the nirK sequences into five major clusters, with one cluster encompassing most marsh clones and all upland clones. Only a few of the nirK clone sequences branched with those of known denitrifying bacteria. The nirS clones formed two major clusters with several subclusters, but all nirS clones showed less than 80% identity to nirS sequences from known denitrifying bacteria. Overall, the data indicated that the denitrifying communities in the two soils have many members and that the soils have a high richness of different nir genes, especially of the nirS gene, most of which have not yet been found in cultivated denitrifiers.  相似文献   

10.
The diversity of sulfate-reducing bacteria (SRB) in brackish sediment was investigated using small-subunit rRNA and dissimilatory sulfite reductase (DSR) gene clone libraries and cultivation. The phylogenetic affiliation of the most commonly retrieved clones for both genes was strikingly similar and produced Desulfosarcina variabilis-like sequences from the inoculum but Desulfomicrobium baculatum-like sequences from a high dilution in natural media. Related organisms were subsequently cultivated from the site. PCR bias appear to be limited (or very similar) for the two primersets and target genes. However, the DSR primers showed a much higher phylogenetic specificity. DSR gene analysis is thus a promising and specific approach for investigating SRB diversity in complex habitats.  相似文献   

11.
The effect of standard agricultural management on the genetic heterogeneity of nitrous oxide reductase (nosZ) fragments from denitrifying prokaryotes in native and cultivated soil was explored. Thirty-six soil cores were composited from each of the two soil management conditions. nosZ gene fragments were amplified from triplicate samples, and PCR products were cloned and screened by restriction fragment length polymorphism (RFLP). The total nosZ RFLP profiles increased in similarity with soil sample size until triplicate 3-g samples produced visually identical RFLP profiles for each treatment. Large differences in total nosZ profiles were observed between the native and cultivated soils. The fragments representing major groups of clones encountered at least twice and four randomly selected clones with unique RFLP patterns were sequenced to verify nosZ identity. The sequence diversity of nosZ clones from the cultivated field was higher, and only eight patterns were found in clone libraries from both soils among the 182 distinct nosZ RFLP patterns identified from the two soils. A group of clones that comprised 32% of all clones dominated the gene library of native soil, whereas many minor groups were observed in the gene library of cultivated soil. The 95% confidence intervals of the Chao1 nonparametric richness estimator for nosZ RFLP data did not overlap, indicating that the levels of species richness are significantly different in the two soils, the cultivated soil having higher diversity. Phylogenetic analysis of deduced amino acid sequences grouped the majority of nosZ clones into an interleaved Michigan soil cluster whose cultured members are alpha-Proteobacteria. Only four nosZ sequences from cultivated soil and one from the native soil were related to sequences found in gamma-Proteobacteria. Sequences from the native field formed a distinct, closely related cluster (D(mean) = 0.16) containing 91.6% of the native clones. Clones from the cultivated field were more distantly related to each other (D(mean) = 0.26), and 65% were found outside of the cluster from the native soil, further indicating a difference in the two communities. Overall, there appears to be a relationship between use and richness, diversity, and the phylogenetic position of nosZ sequences, indicating that agricultural use of soil caused a shift to a more diverse denitrifying community.  相似文献   

12.
The phylogenetic diversity of sulfate-reducing prokaryotes occurring in active deep-sea hydrothermal vent chimney structures was characterized based on the deduced amino acid sequence analysis of the polymerase chain reaction-amplified dissimilatory sulfite reductase (DSR) gene. The DSR genes were successfully amplified from microbial assemblages of the chimney structures, derived from three geographically and geologically distinct deep-sea hydrothermal systems in the Central Indian Ridge (CIR), in the Izu-Bonin Arc (IBA), and the Okinawa Trough (OT), respectively. Phylogenetic analysis revealed seven major phylogenetic groups. More than half of the clones from the CIR chimney structure were related to DSR amino acid sequences of the hyperthermophilic archaeal members of the genus Archaeoglobus, and those of environmental DSR clones within the class Thermodesulfobacteria. From the OT chimney structure, a different group was obtained, which comprised a novel, deep lineage associated with the DSRs of the thermophilic sulfate-reducing bacterium Thermodesulfovibrio. Most of the DSR clones from the IBA chimney structure were phylogenetically associated with the delta-proteobacterial sulfate-reducing bacteria represented by the genus Desulfobulbus. Sequence analysis of DSR clones demonstrated a diverse sulfate-reducing prokaryotic community in the active deep-sea hydrothermal chimney structures.  相似文献   

13.
The phylogenetic diversity of the intestinal microflora of a lower termite, Reticulitermes speratus, was examined by a strategy which does not rely on cultivation of the resident microorganisms. Small-subunit rRNA genes (16S rDNAs) were directly amplified from the mixed-population DNA of the termite gut by the PCR and were clonally isolated. Analysis of partial 16S rDNA sequences showed the existence of well-characterized genera as well as the presence of bacterial species for which no 16S rDNA sequence data are available. Of 55 clones sequenced, 45 were phylogenetically affiliated with four of the major groups of the domain Bacteria: the Proteobacteria, the spirochete group, the Bacteroides group, and the low-G+C-content gram-positive bacteria. Within the Proteobacteria, the 16S rDNA clones showed a close relationship to those of cultivated species of enteric bacteria and sulfate-reducing bacteria, while the 16S rDNA clones in the remaining three groups showed only distant relationships to those of known organisms in these groups. Of the remaining 10 clones, among which 8 clones formed a cluster, there was only very low sequence similarity to known 16S rRNA sequences. None of these clones were affiliated with any of the major groups within the domain Bacteria. The 16S rDNA gene sequence data show that the majority of the intestinal microflora of R. speratus consists of new, uncultured species previously unknown to microbiologists.  相似文献   

14.
Microbial diversity in four wells along a groundwater flowpath in a coal-tar-waste-contaminated aquifer was examined using RFLP analysis of both 16S rDNA and naphthalene dioxygenase (NDO) genes. Amplified ribosomal DNA restriction analysis (ARDRA) relied upon eubacteria-specific primers to generate four clone libraries. From each library, 100 clones were randomly picked for analysis. Sixty percent of 400 clones contained unique ARDRA patterns. Diversity indices calculated for each community were high (Shannon-Weaver, H = 3.53 to 3.69). Clones representing ARDRA patterns found in the highest abundance were sequenced (31 total). Sequences related to aerobic bacteria (e.g., Nitrospira, Methylomonas, and Gallionella) predominated among those retrieved from the uncontaminated area of the site, whereas sequences related to facultatively aerobic and anaerobic bacteria (e.g. Azoarcus, Syntrophus, and Desulfotomaculum) predominated among those retrieved from contaminated areas of the site. Using NDO-specific primers and low-stringency PCR conditions, variability in RFLP patterns was only detected in community-derived DNA (3 of 4 wells) and not in 5 newly isolated naphthalene-degrading pure cultures. The ARDRA patterns of the pure culture isolates were not found in the clone libraries. Polymorphisms in community 16S rDNA and NDO genes found in well-water microorganisms reflected distinctive geochemical conditions across the site. Sequences related to sulfate-reducing bacteria were found in groundwater that contained sulfide, while sequences related to Gallionella, Syntrophus, and nitrate-reducing aromatic hydrocarbon-degrading bacteria were found in groundwater that contained ferrous iron, methane, and naphthalene, respectively.  相似文献   

15.
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.  相似文献   

16.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

17.
The permanently frozen freshwater Lake Fryxell, located in the Dry Valleys of Antarctica, exhibits an ideal geochemistry for microbial sulfate reduction. To investigate the population of sulfate-reducing bacteria in Lake Fryxell, both 16S rRNA gene and metabolic primer sets targeting the dsrA gene for the dissimilatory sulfite reductase alpha subunit were employed to analyze environmental DNA obtained from the water column and sediments of Lake Fryxell. In addition, enrichment cultures of sulfate-reducing bacteria established at 4 degrees C from Lake Fryxell water were also screened using the dsrA primer set. The sequence information obtained showed that a diverse group of sulfate-reducing prokaryotes of the domain Bacteria inhabit Lake Fryxell. With one exception, the enrichment culture sequences were not represented within the environmental sequences. Sequence data were compared with the geochemical profile of Lake Fryxell to identify possible connections between the diversity of sulfate-reducing bacteria and limnological conditions. Several clone groups were highly localized with respect to lake depth and, therefore, experienced specific physiochemical conditions. However, all sulfate-reducing bacteria inhabiting Lake Fryxell must function under the constantly cold conditions characteristic of this extreme environment.  相似文献   

18.
The permanently frozen freshwater Lake Fryxell, located in the Dry Valleys of Antarctica, exhibits an ideal geochemistry for microbial sulfate reduction. To investigate the population of sulfate-reducing bacteria in Lake Fryxell, both 16S rRNA gene and metabolic primer sets targeting the dsrA gene for the dissimilatory sulfite reductase alpha subunit were employed to analyze environmental DNA obtained from the water column and sediments of Lake Fryxell. In addition, enrichment cultures of sulfate-reducing bacteria established at 4°C from Lake Fryxell water were also screened using the dsrA primer set. The sequence information obtained showed that a diverse group of sulfate-reducing prokaryotes of the domain Bacteria inhabit Lake Fryxell. With one exception, the enrichment culture sequences were not represented within the environmental sequences. Sequence data were compared with the geochemical profile of Lake Fryxell to identify possible connections between the diversity of sulfate-reducing bacteria and limnological conditions. Several clone groups were highly localized with respect to lake depth and, therefore, experienced specific physiochemical conditions. However, all sulfate-reducing bacteria inhabiting Lake Fryxell must function under the constantly cold conditions characteristic of this extreme environment.  相似文献   

19.
The diversity of sulfate-reducing bacteria (SRB) in brackish sediment was investigated using small-subunit rRNA and dissimilatory sulfite reductase (DSR) gene clone libraries and cultivation. The phylogenetic affiliation of the most commonly retrieved clones for both genes was strikingly similar and produced Desulfosarcina variabilis-like sequences from the inoculum but Desulfomicrobium baculatum-like sequences from a high dilution in natural media. Related organisms were subsequently cultivated from the site. PCR bias appear to be limited (or very similar) for the two primersets and target genes. However, the DSR primers showed a much higher phylogenetic specificity. DSR gene analysis is thus a promising and specific approach for investigating SRB diversity in complex habitats.  相似文献   

20.
The characterization of microbial assemblages within solid gas hydrate, especially those that may be physiologically active under in situ hydrate conditions, is essential to gain a better understanding of the effects and contributions of microbial activities in Gulf of Mexico (GoM) hydrate ecosystems. In this study, the composition of the Bacteria and Archaea communities was determined by 16S rRNA phylogenetic analyses of clone libraries derived from RNA and DNA extracted from sediment-entrained hydrate (SEH) and interior hydrate (IH). The hydrate was recovered from an exposed mound located in the northern GoM continental slope with a hydrate chipper designed for use on the manned-submersible Johnson Sea Link (water depth, 550 m). Previous geochemical analyses indicated that there was increased metabolic activity in the SEH compared to the IH layer (B. N. Orcutt, A. Boetius, S. K. Lugo, I. R. Macdonald, V. A. Samarkin, and S. Joye, Chem. Geol. 205:239-251). Phylogenetic analysis of RNA- and DNA-derived clones indicated that there was greater diversity in the SEH libraries than in the IH libraries. A majority of the clones obtained from the metabolically active fraction of the microbial community were most closely related to putative sulfate-reducing bacteria and anaerobic methane-oxidizing archaea. Several novel bacterial and archaeal phylotypes for which there were no previously identified closely related cultured isolates were detected in the RNA- and DNA-derived clone libraries. This study was the first phylogenetic analysis of the metabolically active fraction of the microbial community extant in the distinct SEH and IH layers of GoM gas hydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号