首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pancreatic cancer remains a fatal disease for the majority of patients. Cisplatin has displayed significant cytotoxic effects against the pancreatic cancer cells, however the underlying mechanisms remain inconclusive. Here, we found that cisplatin mainly induced non-apoptotic death of the pancreatic cancer cells (AsPC-1 and Capan-2), which was associated with a significant p53 activation (phosphorylation and accumulation). Further, activated p53 was found to translocate to mitochondria where it formed a complex with cyclophilin D (Cyp-D). We provided evidences to support that mitochondrial Cyp-D/p53 complexation might be critical for cisplatin-induced non-apoptotic death of pancreatic cancer cells. Inhibition of Cyp-D by its inhibitor cyclosporine A (CsA), or by shRNA-mediated knockdown suppressed cisplatin-induced pancreatic cancer cell death. Both CsA and Cyp-D knockdown also disrupted the Cyp-D/p53 complex formation in mitochondria. Meanwhile, the pancreatic cancer cells with p53 knockdown were resistant to cisplatin. On the other hand, HEK-293 over-expressing Cyp-D were hyper-sensitive to cisplatin. Interestingly, camptothecin (CMT)-induced pancreatic cancer cell apoptotic death was not affected CsA or Cyp-D knockdown. Together, these data suggested that cisplatin-induced non-apoptotic death requires mitochondria Cyp-D-p53 signaling in pancreatic cancer cells.  相似文献   

2.
Lung cancer is a major cause of cancer-related mortality in the United States and around the world. Due to the pre-existing or acquired chemo-resistance, the current standard chemotherapy regimens only show moderate activity against lung cancer. In the current study, we explored the potential anti-lung cancer activity of cinobufotalin in vivo and in vitro, and studied the underlying mechanisms. We demonstrated that cinobufotalin displayed considerable cytotoxicity against lung cancer cells (A549, H460 and HTB-58 lines) without inducing significant cell apoptosis. Our data suggest that mitochondrial protein cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates cinobufotalin-induced non-apoptotic death of lung cancer cells. The Cyp-D inhibitor cyclosporine A (CsA), the mPTP blocker sanglifehrin A (SfA), and Cyp-D shRNA-silencing significantly inhibited cinobufotalin-induced mitochondrial membrane potential (MMP) reduction and A549 cell death (but not apoptosis). Using a mice xenograft model, we found that cinobufotalin inhibited A549 lung cancer cell growth in vivo. Thus, cinobufotalin mainly induces Cyp-D-dependent non-apoptotic death in cultured lung cancer cells. The results of this study suggest that cinobufotalin might be further investigated as a novel anti-lung cancer agent.  相似文献   

3.
Oxidative stress-induced neuronal cell death requires opening of the mitochondrial permeability transition pore. P53 mitochondrial translocation and association with Cyclophilin D (Cyp-D) is required for the pore opening. Here we tested this signaling axis in oxygen glucose deprivation (OGD)/re-oxygenation-induced in vitro neuronal death. Using mitochondrion immunoprecipitation, we found that p53 translocated to mitochondrion and associated with Cyp-D in SH-SY5Y cells exposed to (OGD)/re-oxygenation. Disruption of this complex by Cyp-D inhibitor Cyclosporine A (CsA), or by Cyp-D or p53 deficiency, significantly inhibited OGD/re-oxygenation-induced apoptosis-independent cell death. Conversely, over-expression of Cyp-D in SH-SY5Y cells caused spontaneous cell death, and these cells were more vulnerable to OGD/re-oxygenation. Finally, CsA or Cyp-D RNAi suppressed OGD/re-oxygenation-induced neuronal cell death in primary cultures. Together, our study suggests that OGD/re-oxygenation-induced in vitro cell death involves a mitochondrial Cyp-D/p53 signaling axis.  相似文献   

4.
Human malignant gliomas are highly resistant to current therapeutic approaches. We previously demonstrated that cyclosporine A (CsA) induces an apoptotic cell death in rat C6 glioma cells. In the present study, we found the induction of growth arrest or cell death of human malignant glioma cells exposed to CsA. In studied glioma cells, an accumulation of p21Cip1/Waf1 protein, a cell cycle inhibitor, was observed following CsA treatment, even in the absence of functional p53 tumour suppressor. CsA induced a senescence-associated growth arrest, in U87-MG glioma cells with functional p53, while in U373 and T98G glioma cells with mutated p53, CsA treatment triggered cell death associated with alterations of cell morphology, cytoplasm vacuolation, and condensation of chromatin. In T98G cells this effect was completely abolished by simultaneous treatment with an inhibitor of protein synthesis, cycloheximide (CHX). Moreover, CsA-induced cell death was accompanied by activation of executory caspases followed by PARP cleavage. CsA treatment did not elevate fasL expression and had no effect on mitochondrial membrane potential. We conclude that CsA triggers either growth arrest or non-apoptotic, programmed cell death in human malignant glioma cells. Moreover, CsA employs mechanisms different to those in the action of radio- and chemotherapeutics, and operating even in cells resistant to conventional treatments. Thus, CsA or related drugs may be an effective novel strategy to treat drug-resistant gliomas or complement apoptosis-based therapies.  相似文献   

5.
The cardiotoxic effects of doxorubicin, a potent chemotherapeutic agent, have been linked to DNA damage, oxidative mitochondrial damage, and nuclear translocation of p53, but the exact molecular mechanisms causing p53 transactivation and doxorubicin-induced cardiomyopathy are not clear. The present study was carried out to determine whether extracellular signal-regulated kinases (ERKs), which are known to be activated by DNA damaging agents, are responsible for doxorubicin-induced p53 activation and oxidative mitochondrial damage in H9c2 cells. Cell death was measured by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling, annexin V-fluorescein isothiocyanate, activation of caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase (PARP). We found that doxorubicin produced cell death in H9c2 cells in a time-dependent manner, beginning at 6 h, and these changes are associated decreased expression of Bcl-2, increases in Bax and p53 upregulated modulator of apoptosis-alpha expression, and collapse of mitochondria membrane potential. The changes in cell death and Bcl-2 family proteins, however, were preceded by earlier activation and nuclear translocation of ERKs, followed by increased phosphorylation at Ser15 and nuclear translocation of the phosphorylated p53. The functional importance of ERK1/2 and p53 in doxorubicin-induced toxicity was further demonstrated by the specific ERK inhibitor U-0126 and p53 inhibitor pifithrin (PFT)-alpha, which abrogated the changes in Bcl-2 family proteins and cell death produced by doxorubicin. U-0126 blocked the phosphorylation and nuclear translocation of both ERK1/2 and p53, whereas PFT-alpha blocked only the changes in p53. Doxorubicin and ERK inhibitors produced similar changes in ERK1/2-p53, PARP, and caspase-3 in neonatal rat cultured cardiomyocytes. Thus we conclude that ERK1/2 are functionally linked to p53 and that the ERK1/2-p53 cascade is the upstream signaling pathway responsible for doxorubicin-induced cardiac cell apoptosis. ERKs and p53 may be considered as novel therapeutic targets for the treatment of doxorubicin-induced cardiotoxicity.  相似文献   

6.
The effect of lipopolysaccharide on doxorubicin-induced cell death was studied by using mouse RAW 264.7 macrophage cells. Pretreatment with lipopolysaccharide at 10 ng/mL prevented doxorubicin-induced cell death and the inhibition was roughly dependent on the concentration of lipopolysaccharide. Posttreatment with lipopolysaccharide for 1 hour also prevented doxorubicin-induced cell death. Lipopolysaccharide inhibited DNA fragmentation and caspase-3 activation in doxorubicin-treated RAW 264.7 cells, suggesting the prevention of doxorubicin-induced apoptosis. Lipopolysaccharide did not significantly inhibit doxorubicin-induced DNA damage detected by single-cell gel electrophoresis (comet) assay. Lipopolysaccharide definitely inhibited the stabilization and nuclear translocation of p53 in doxorubicin-treated RAW 264.7 cells. Lipopolysaccharide, as well as being an inhibitor of p53, abolished doxorubicin-induced apoptosis. Therefore, p53 was suggested to play a pivotal role in the prevention of doxorubicin-induced apoptosis in RAW 264.7 cells by lipopolysaccharide.  相似文献   

7.
Antibodies against the COOH-terminal domain of cell surface GRP78 induce apoptosis in cancer cell lines via activation of p53 signaling. We now have studied the effects of PFT-α, an inhibitor of p53-mediated apoptotic pathways, on anti-GRP78 antibody-induced activation of p53 and pro-apoptotic signaling in 1-LN prostate cancer cells. Pretreatment of 1-LN cancer cells with this agent significantly inhibited antibody or doxorubicin-induced upregulation of p53. Concomitantly, PFT-α treatment prevented down regulation of ERK1/2 activation by either antibody or doxorubicin. Likewise, PFT-α prevented increases in the pro-apoptotic proteins BAD, BAK, BAX, PUMA, and NOXA as well as activation of caspases-3, -7, and -9. We conclude that antibody-induced apoptosis in prostate cancer cells is mediated predominantly by p53 using the mitochondrial pathway of apoptosis.  相似文献   

8.
We demonstrate the role of p53-mediated caspase-2 activation in the mitochondrial release of apoptosis-inducing factor (AIF) in cisplatin-treated renal tubular epithelial cells. Gene silencing of AIF with its small interfering RNA (siRNA) suppressed cisplatin-induced AIF expression and provided a marked protection against cell death. Subcellular fractionation and immunofluorescence studies revealed cisplatin-induced translocation of AIF from the mitochondria to the nuclei. Pancaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone or p53 inhibitor pifithrin-alpha markedly prevented mitochondrial release of AIF, suggesting that caspases and p53 are involved in this release. Caspase-2 and -3 that were predominantly activated in response to cisplatin provided a unique model to study the role of these caspases in AIF release. Cisplatin-treated caspase-3 (+/+) and caspase-3 (-/-) cells exhibited similar AIF translocation to the nuclei, suggesting that caspase-3 does not affect AIF translocation, and thus, caspase-2 may be involved in the translocation. Caspase-2 inhibitor benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethylketone or down-regulation of caspase-2 by its siRNA significantly prevented translocation of AIF. Caspase-2 activation was a critical response from p53, which was markedly induced and phosphorylated in cisplatin-treated cells. Overexpression of p53 not only resulted in caspase-2 activation but also mitochondrial release of AIF. The p53 inhibitor pifithrin-alpha or p53 siRNA prevented both cisplatin-induced caspase-2 activation and mitochondrial release of AIF. Caspase-2 activation was dependent on the p53-responsive gene, PIDD, a death domain-containing protein that was induced by cisplatin in a p53-dependent manner. These results suggest that caspase-2 activation mediated by p53 is an important pathway involved in the mitochondrial release of AIF in response to cisplatin injury.  相似文献   

9.
Cyclosporine A (CsA), a widely used immunosuppressant shows cytotoxic effects by either inducing apoptosis or redirecting the cell towards non-apoptotic cell death. However, there still remains a lacuna in understanding the mechanism of CsA induced non-apoptotic cell death. In the present study we investigated calcineurin dependent or independent cytotoxic effects of CsA, a calcineurin inhibitor, in cervical cancerous SiHa cells. Decreased cell viability and massive cytoplasmic vacuolations were observed in CsA treated SiHa cells, having increased calcineurin activity. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR), accompanied by a decrease in cyclophilin B (ER resident PPIase), preceded the formation of the vacuoles. These vacuoles stained positive for many ER resident markers confirming their ER origin; but the absence of autophagosomal marker, LC3II, ruled out autophagy. Extensively vacuolated cells eventually undergo cell death which lacked the typical apoptotic features, but showed significant decrease in AIP (ALG2 interacting protein) as seen in paraptosis. ER-vacuolation was prevented by cycloheximide and salubrinal thereby indicating requirement of active protein synthesis. Inhibiting calcineurin activity by either Tacrolimus (FK506) or by knockdown of calcineurin B subunit did not result in either ER-stress or cellular vacuolation. However, knockdown of cyclophilin B by siRNA resulted in increased expression of Bip and IRE1α, together with cytoplasmic vacuolation. In conclusion, we report that persistent ER stress due to cyclophilin B inhibition in CsA treated cervical cancer cells caused cellular vacuolation which culminated in a non-apoptotic cell death response similar to paraptosis. Additionally, the paraptotic effects of CsA are independent of calcineurin inhibition.  相似文献   

10.
Here we show that chrysin induces growth inhibition and apoptosis in cultured lung cancer A549 cells, and activation of AMP-activated protein kinase (AMPK) may contribute to this process. Our Western-blots results demonstrated a significant AMPK activation after chrysin treatment in A549 cells. Inhibition of AMPK by shRNA-mediated gene silencing, or by its inhibitor, diminished chrysin-induced A549 cell growth inhibition and apoptosis. Forced activation of AMPK by introducing a constitutively active form of AMPKα (CA-AMPKα), or by its activators, mimicked chrysin's effect. For mechanism analysis, we found chrysin inhibited Akt/mammalian target of rapamycin (mTOR) activation, and knocking-down of AMPK by shRNA almost reversed this effect. Finally, we observed that a relative low dose of chrysin enhanced doxorubicin-induced AMPK activation to promote A549 cell apoptosis. Our study suggests that activation of AMPK by chrysin contributes to Akt suppression, growth inhibition and apoptosis in human lung cancer cells, and agents that could activate AMPK may serve as useful adjuvants for traditional chemotherapy against lung cancer.  相似文献   

11.
Doxorubicin, an anthracycline antibiotic, is widely used in cancer treatment. Doxorubicin produces genotoxic stress and p53 activation in both carcinoma and non-carcinoma cells. Although its side effects in non-carcinoma cells, especially in heart tissue, are well known, the molecular targets of doxorubicin are poorly characterized. Here, we report that doxorubicin inhibits AMP-activated protein kinase (AMPK) resulting in SIRT1 dysfunction and p53 accumulation. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) or H9C2 cardiomyocyte were exposed to doxorubicin at different doses and durations. Cell death and p53, SIRT1, and AMPK levels were examined by Western blot. In MEFs, doxorubicin inhibited AMPK activation, increased cell death, and induced robust p53 accumulation. Genetic deletion of AMPKα1 reduced NAD(+) levels and SIRT1 activity and significantly increased the levels of p53 and cell death. Pre-activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside or transfection with an adenovirus encoding a constitutively active AMPK (AMPK-CA) markedly reduced the effects of doxorubicin in MEFs from Ampkα1 knock-out mice. Conversely, pre-inhibition of Ampk further sensitized MEFs to doxorubicin-induced cell death. Genetic knockdown of p53 protected both wild-type and Ampkα1(-/-) MEFs from doxorubicin-induced cell death. p53 accumulation in Ampkα1(-/-) MEFs was reversed by SIRT1 activation by resveratrol. Taken together, these data suggest that AMPK inhibition by doxorubicin causes p53 accumulation and SIRT1 dysfunction in MEFs and further suggest that pharmacological activation of AMPK might alleviate the side effects of doxorubicin.  相似文献   

12.
He Q  Huang B  Zhao J  Zhang Y  Zhang S  Miao J 《The FEBS journal》2008,275(22):5725-5732
Integrin beta4 is a tissue-specific protein, but its role in autophagy of lung adenocarcinoma cells is not clear. In this study, we used microtubule-associated protein 1 light chain 3 processing and acridine orange staining to reveal that knockdown of integrin beta4 by its specific siRNA induced autophagic cell death in A549 lung cancer cells. Next, we investigated the effects of siRNA-mediated downregulation of integrin beta4 on cell death and the level of p53. The proportion of dead cells and level of p53 were significantly increased. Inhibition of autophagy by the inhibitor 3-methyladenine attenuated the cell death induced by integrin beta4 knockdown. To further understand the relationship between p53 and integrin beta4 in autophagic cell death, we inhibited the expression of integrin beta4 by its specific siRNA in p53-mutated H322 lung cancer cells. Knockdown of integrin beta4 could not induce autophagic cell death in H322 cells. The data suggest that integrin beta4 is implicated in and associated with p53 in autophagy of lung cancer cells.  相似文献   

13.
14.
Doxorubicin induces caspase-3 activation and apoptosis in Jurkat cells but inhibition of this enzyme did not prevent cell death, suggesting that another caspase(s) is critically implicated. Western blot analysis of cell extracts indicated that caspases 2, 3, 4, 6, 7, 8, 9, and 10 were activated by doxorubicin. Cotreatment of cells with the caspase inhibitors Ac-DEVD-CHO, Z-VDVAD-fmk, Z-IETD-fmk, and Z-LEHD-fmk alone or in combination, or overexpression of CrmA, prevented many morphological features of apoptosis but not loss of mitochondrial membrane potential (delta(psi)m), phospatidilserine exposure, and cell death. Western blot analysis of cells treated with doxorubicin in the presence of inhibitors allowed elucidation of the sequential order of caspase activation. Z-IETD-fmk or Z-LEHD-fmk, which inhibit caspase-9 activity, blocked the activation of all caspases studied, lamin B degradation, and the development of apoptotic morphology, but not cell death. All morphological and biochemical features of apoptosis, as well as cell death, were prevented by cotreatment of cells with the general caspase inhibitor Z-VAD-fmk or by overexpression of Bcl-2. Doxorubicin cytotoxicity was also blocked by the protein synthesis inhibitor cycloheximide. Delayed addition of Z-VAD-fmk after doxorubicin treatment, but prior to the appearance of cells displaying a low delta(psi)m, prevented cell death. These results, taken together, suggest that the key mediator of doxorubicin-induced apoptosis in Jurkat cells may be an inducible, Z-VAD-sensitive caspase (caspase-X), which would cause delta(psi)m loss, release of apoptogenic factors from mitochondria, and cell death.  相似文献   

15.
Previously, we have identified a novel centrosomal protein centrobin that asymmetrically localizes to the daughter centriole. We found that depletion of centrobin expression inhibited the centriole duplication and impaired cytokinesis. However, the biological significance of centrobin in the cell cycle remains unknown. In the current study, we observed that silencing centrobin significantly inhibited the proliferation of lung cancer cell A549 and prevented the cells from G1 to S transition, whereas the growth rate of lung cancer cell line H1299, a p53-null cell line, was not affected. Furthermore, we demonstrated that the G1–S-phase arrest induced by centrobin knockdown in A549 cells is mediated by the upregulation of cell-cycle regulator p53, which is associated with the activation of cellular stress induced p38 pathway instead of DNA damage induced ATM pathway. Inhibition of p38 activity or downregulation of p38 expression could overcome the cell-cycle arrest caused by centrobin depletion. Taken together, our current findings demonstrated that centrobin plays an important role in the progression of cell cycle, and a tight association between the cell-cycle progression and defective centrosomes caused by depletion of centrobin.  相似文献   

16.
Anticancer properties and mechanisms of mimulone (MML), C-geranylflavonoid isolated from the Paulownia tomentosa fruits, were firstly elucidated in this study. MML prevented cell proliferation in a dose- and time-dependent way and triggered apoptosis through the extrinsic pathway in A549 human lung adenocarcinoma cells. Furthermore, MML-treated cells displayed autophagic features, such as the formation of autophagic vacuoles, a primary morphological feature of autophagy, and the accumulation of microtubule-associated protein 1 light chain 3 (LC3) puncta, another typical maker of autophagy, as determined by FITC-conjugated immunostaining and monodansylcadaverine (MDC) staining, respectively. The expression levels of LC3-I and LC3-II, specific markers of autophagy, were also augmented by MML treatment. Autophagy inhibition by 3-methyladenine (3-MA), pharmacological autophagy inhibitor, and shRNA knockdown of Beclin-1 reduced apoptotic cell death induced by MML. Autophagic flux was not significantly affected by MML treatment and lysosomal inhibitor, chloroquine (CQ) suppressed MML-induced autophagy and apoptosis. MML-induced autophagy was promoted by decreases in p53 and p-mTOR levels and increase of p-AMPK. Moreover, inhibition of p53 transactivation by pifithrin-α (PFT-α) and knockdown of p53 enhanced induction of autophagy and finally promoted apoptotic cell death. Overall, the results demonstrate that autophagy contributes to the cytotoxicity of MML in cancer cells harboring wild-type p53. This study strongly suggests that MML is a potential candidate for an anticancer agent targeting both autophagy and apoptotic cell death in human lung cancer. Moreover, co-treatment of MML and p53 inhibitor would be more effective in human lung cancer therapy.  相似文献   

17.
Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells. However, the regulation of survivin and p53 on the quercetin-induced cell growth inhibition and apoptosis in cancer cells remains unclear. In this study, we investigated the roles of survivin and p53 in the quercetin-treated human lung carcinoma cells. Quercetin (20-80 mum for 24 h) induced the cytotoxicity and apoptosis in both A549 and H1299 lung carcinoma cells in a concentration-dependent manner. Additionally, quercetin inhibited the cell growth, increased the fractions of G(2)/M phase, and raised the levels of cyclin B1 and phospho-cdc2 (threonine 161) proteins. Moreover, quercetin induced abnormal chromosome segregation in H1299 cells. The survivin proteins were highly expressed in mitotic phase and were located on the midbody of cytokinesis; however, the survivin proteins were increased and concentrated on the nuclei following quercetin treatment in the lung carcinoma cells. Transfection of a survivin antisense oligodeoxynucleotide enhanced the quercetin-induced cell growth inhibition and cytotoxicity. Subsequently, quercetin increased the levels of total p53 (DO-1), phospho-p53 (serine 15), and p21 proteins, which were translocated to the nuclei in A549 cells. Treatment with a specific p53 inhibitor, pifithrin-alpha, or transfection of a p53 antisense oligodeoxynucleotide enhanced the cytotoxicity of the quercetin-treated cells. Furthermore, transfection of a small interfering RNA of p21 enhanced the quercetin-induced cell death in A549 cells. Together, our results suggest that survivin can reduce the cell growth inhibition and apoptosis, and p53 elevates the p21 level, which may attenuate the cell death in the quercetin-treated human lung carcinoma cells.  相似文献   

18.
Doxorubicin is one of the most effective anti-cancer agents. However, its use is associated with adverse cardiac effects, including cardiomyopathy and progressive heart failure. Given the multiple beneficial effects of the mitochondrial division inhibitor (mdivi-1) in a variety of pathological conditions including heart failure and ischaemia and reperfusion injury, we investigated the effects of mdivi-1 on doxorubicin-induced cardiac dysfunction in naïve and stressed conditions using Langendorff perfused heart models and a model of oxidative stress was used to assess the effects of drug treatments on the mitochondrial depolarisation and hypercontracture of cardiac myocytes. Western blot analysis was used to measure the levels of p-Akt and p-Erk 1/2 and flow cytometry analysis was used to measure the levels p-Drp1 and p-p53 upon drug treatment. The HL60 leukaemia cell line was used to evaluate the effects of pharmacological inhibition of mitochondrial division on the cytotoxicity of doxorubicin in a cancer cell line. Doxorubicin caused a significant impairment of cardiac function and increased the infarct size to risk ratio in both naïve conditions and during ischaemia/reperfusion injury. Interestingly, co-treatment of doxorubicin with mdivi-1 attenuated these detrimental effects of doxorubicin. Doxorubicin also caused a reduction in the time taken to depolarisation and hypercontracture of cardiac myocytes, which were reversed with mdivi-1. Finally, doxorubicin caused a significant elevation in the levels of signalling proteins p-Akt, p-Erk 1/2, p-Drp1 and p-p53. Co-incubation of mdivi-1 with doxorubicin did not reduce the cytotoxicity of doxorubicin against HL-60 cells. These data suggest that the inhibition of mitochondrial fission protects the heart against doxorubicin-induced cardiac injury and identify mitochondrial fission as a new therapeutic target in ameliorating doxorubicin-induced cardiotoxicity without affecting its anti-cancer properties.  相似文献   

19.
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion.  相似文献   

20.
Proapoptotic gene transfer to promote death or to augment killing by DNA-damaging agents represents a promising strategy for cancer therapy. We have constructed an adenoviral Tet-Off trade mark vector with tightly controlled expression of Bid (Ad-Bid) (Clontech, Palo Alto, CA). Using the non-small cell lung cancer cell lines H460, H358, and A549, low dose Ad-Bid was shown to induce high levels of full-length Bid as well as caspase-3 and -9 activity. Although only a small fraction of Bid was processed to truncated Bid (a step inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone), Ad-Bid gene transfer resulted in mitochondrial changes consistent with apoptosis (mitochondrial depolarization, cytochrome c release), DNA fragmentation, and a dramatic loss of cell viability. The proapoptotic effects of Ad-Bid were independent of p53 status and were augmented markedly by caspase-8 activators such as the DNA-damaging agent cisplatin. When Ad-Bid and cisplatin were used together, chemosensitivity was restored in p53-null H358 cells, increasing death from 35% following treatment with cisplatin and Ad-LacZ to >90% death with Ad-Bid and cisplatin (Ad-Bid alone induced 50% cell death under these conditions). Ad-Bid can induce apoptosis in malignant cells and enhance chemosensitivity in the absence of p53, suggesting this approach as a potential cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号