共查询到20条相似文献,搜索用时 15 毫秒
1.
Acinetobacter baumannii outer membrane protein A modulates the biogenesis of outer membrane vesicles
Moon DC Choi CH Lee JH Choi CW Kim HY Park JS Kim SI Lee JC 《Journal of microbiology (Seoul, Korea)》2012,50(1):155-160
Acinetobacter baumannii secretes outer membrane vesicles (OMVs) during both in vitro and in vivo growth, but the biogenesis mechanism by which A. baumannii produces OMVs remains undefined. Outer membrane protein A of A. baumannii (AbOmpA) is a major protein in the outer membrane and the C-terminus of AbOmpA interacts with diaminopimelate of peptidoglycan.
This study investigated the role of AbOmpA in the biogenesis of A. baumannii OMVs. Quantitative and qualitative approaches were used to analyze OMV biogenesis in A. baumannii ATCC 19606T and an isogenic ΔAbOmpA mutant. OMV production was significantly increased in the ΔAbOmpA mutant compared to
wild-type bacteria as demonstrated by quantitation of proteins and lipopolysaccharides (LPS) packaged in OMVs. LPS profiles
prepared from OMVs from wild-type bacteria and the ΔAbOmpA mutant had identical patterns, but proteomic analysis showed different
protein constituents in OMVs from wild-type bacteria compared to the ΔAbOmpA mutant. In conclusion, AbOmpA influences OMV
biogenesis by controlling OMV production and protein composition. 相似文献
2.
Bioinformatic analysis of outer membrane proteome of Neisseria meningitidis and Neisseria lactamica.
Ana Abel Sandra Sánchez Jesús Arenas María T Criado Carlos M Ferreirós 《International microbiology》2007,10(1):5-11
Two-dimensional electrophoresis (isoelectric focusing/SDS-PAGE) and Western-blotting techniques were used to analyze and compare common and/or specific outer-membrane proteins and antigens from Neisseria meningitidis and Neisseria lactamica. Bioinformatic image analyses of proteome and immunoproteome maps indicated the presence of numerous proteins and several antigens shared by N. meningitidis and N. lactamica, although the inter-strain variation in the maps was of similar magnitude to the inter-species variation, and digital comparison of the maps did not reveal proteins found to be identical by MALDI-TOF fingerprinting analysis. PorA and RmpM, two relevant outer-membrane antigens, manifested as various spots at several different positions. While some of these were common to all the strains analyzed, others were exclusive to N. meningitidis and their electrophoretic mobilities were different than expected. One such spot, with a molecular mass of 19 kDa, may be the C-terminal fragment of RmpM (RmpM-Cter). The results demonstrate that computer-driven analysis based exclusively on spot positions in the proteome or immunoproteome maps is not a reliable approach to predict the identity of proteins or antigens; rather, other identification techniques are necessary to obtain accurate comparisons. 相似文献
3.
Gram-negative bacteria have an outer membrane (OM) that functions as a barrier to protect the cell from toxic compounds such as antibiotics and detergents. The OM is a highly asymmetric bilayer composed of phospholipids, glycolipids, and proteins. Assembly of this essential organelle occurs outside the cytoplasm in an environment that lacks obvious energy sources such as ATP, and the mechanisms involved are poorly understood. We describe the identification of a multiprotein complex required for the assembly of proteins in the OM of Escherichia coli. We also demonstrate genetic interactions between genes encoding components of this protein assembly complex and imp, which encodes a protein involved in the assembly of lipopolysaccharides (LPS) in the OM. These genetic interactions suggest a role for YfgL, one of the lipoprotein components of the protein assembly complex, in a homeostatic control mechanism that coordinates the overall OM assembly process. 相似文献
4.
W Bandlow 《Biochimica et biophysica acta》1972,282(1):105-122
5.
Pili belong to a broad class of bacterial surface structures that play a key role in infection and pathogenicity. The largest and best characterised pilus biogenesis system--the chaperone-usher pathway--is particularly remarkable in its ability to synthesise and display highly organised structures at the outer membrane without any input from endogenous energy sources. The past few years have heralded exciting new developments in our understanding of the structural biology and mechanism of pilus assembly, which are discussed in this review. Such knowledge will be particularly important in the future, as we approach an era of widespread resistance to common antibiotics and require new targets. 相似文献
6.
Narita S 《Bioscience, biotechnology, and biochemistry》2011,75(6):1044-1054
The outer membrane of gram-negative bacteria is an asymmetric lipid bilayer with phospholipids and lipopolysaccharides (LPSs). β-Barreled outer membrane proteins and lipoproteins are embedded in the outer membrane. All of these constituents are essential to the function of the outer membrane. The transport systems for lipoproteins have been characterized in detail. An ATP-binding cassette (ABC) transporter, LolCDE, initiates sorting by mediating the detachment of lipoproteins from the inner membrane to form a water-soluble lipoprotein-LolA complex in the periplasm. Lipoproteins are then transferred to LolB at the outer membrane and are incorporated into the lipid bilayer. A model analogous to the Lol system has been suggested for the transport of LPS, where an ABC transporter, LptBFG, mediates the detachment of LPS from the inner membrane. Recent developments in the functional characterization of ABC transporters involved in the biogenesis of the outer membrane in gram-negative bacteria are discussed. 相似文献
7.
D.-Y. Kao Y.-C. Cheng T.-Y. Kuo S.-B. Lin C.-C. Lin L.-P. Chow W.-J. Chen 《Journal of applied microbiology》2009,106(6):2079-2085
Aims: Vibrio anguillarum is a universal marine pathogen causing vibriosis. Vibrio anguillarum encounters different osmolarity conditions between seawater and hosts, and its outer membrane proteins (OMPs) play a crucial role in the adaptation to changes of the surroundings. In the present study, proteomic approaches were applied to investigate the salt-responsive OMPs of V. anguillarum .
Methods and Results: Lower salinity (0·85% NaCl) is more suitable for growth, survival and swimming motility of the bacterium. Comparative two-dimensional electrophoresis (2-DE) analysis reveals six differentially expressed protein spots among three different salinities, which were successfully identified as OmpU, maltoporin, flagellin B, Omp26La, Omp26La and OmpW respectively.
Conclusions: OmpW and OmpU were highly expressed at 3·5% salinity, suggesting their role in the efficient efflux of NaCl. Maltoporin was downregulated in higher salinity, indicating that higher osmolarity inhibits carbohydrate transport and bacterial growth. Omp26La, the homologue of OmpV, functions as a salt-responsive protein in lower salinity.
Significance and Impact of the Study: To the best of our knowledge, this is the first report describing salt stress-responsive proteins of V. anguillarum using proteomic approaches. Our results provide a useful strategy for delineating the osmoregulatory mechanism of the marine pathogens. 相似文献
Methods and Results: Lower salinity (0·85% NaCl) is more suitable for growth, survival and swimming motility of the bacterium. Comparative two-dimensional electrophoresis (2-DE) analysis reveals six differentially expressed protein spots among three different salinities, which were successfully identified as OmpU, maltoporin, flagellin B, Omp26La, Omp26La and OmpW respectively.
Conclusions: OmpW and OmpU were highly expressed at 3·5% salinity, suggesting their role in the efficient efflux of NaCl. Maltoporin was downregulated in higher salinity, indicating that higher osmolarity inhibits carbohydrate transport and bacterial growth. Omp26La, the homologue of OmpV, functions as a salt-responsive protein in lower salinity.
Significance and Impact of the Study: To the best of our knowledge, this is the first report describing salt stress-responsive proteins of V. anguillarum using proteomic approaches. Our results provide a useful strategy for delineating the osmoregulatory mechanism of the marine pathogens. 相似文献
8.
Comparative proteome analysis of Helicobacter pylori 总被引:16,自引:0,他引:16
Jungblut PR Bumann D Haas G Zimny-Arndt U Holland P Lamer S Siejak F Aebischer A Meyer TF 《Molecular microbiology》2000,36(3):710-725
Helicobacter pylori, the causative agent of gastritis, ulcer and stomach carcinoma, infects approximately half of the worlds population. After sequencing the complete genome of two strains, 26695 and J99, we have approached the demanding task of investigating the functional part of the genetic information containing macromolecules, the proteome. The proteins of three strains of H. pylori, 26695 and J99, and a prominent strain used in animal models SS1, were separated by a high-resolution two-dimensional electrophoresis technique with a resolution power of 5000 protein spots. Up to 1800 protein species were separated from H. pylori which had been cultivated for 5 days on agar plates. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) peptide mass fingerprinting we have identified 152 proteins, including nine known virulence factors and 28 antigens. The three strains investigated had only a few protein spots in common. We observe that proteins with an amino acid exchange resulting in a net change of only one charge are shifted in the two-dimensional electrophoresis (2-DE) pattern. The expression of 27 predicted conserved hypothetical open reading frames (ORFs) and six unknown ORFs were confirmed. The growth conditions of the bacteria were shown to have an effect on the presence of certain proteins. A preliminary immunoblotting study using human sera revealed that this approach is ideal for identifying proteins of diagnostic or therapeutic value. H. pylori 2-DE patterns with their identified protein species were added to the dynamic 2D-PAGE database (http://www.mpiib-berlin.mpg.de/2D-PAGE/). This basic knowledge of the proteome in the public domain will be an effective instrument for the identification of new virulence or pathogenic factors, and antigens of potentially diagnostic or curative value against H. pylori. 相似文献
9.
Yusuke Shiromoto Satomi Kuramochi-Miyagawa Akito Daiba Shinichiro Chuma Ami Katanaya Akiko Katsumata Ken Nishimura Manami Ohtaka Mahito Nakanishi Toshinobu Nakamura Koichi Yoshinaga Noriko Asada Shota Nakamura Teruo Yasunaga Kanako Kojima-Kita Daisuke Itou Tohru Kimura Toru Nakano 《RNA (New York, N.Y.)》2013,19(6):803-810
piRNA (PIWI-interacting RNA) is a germ cell–specific small RNA in which biogenesis PIWI (P-element wimpy testis) family proteins play crucial roles. MILI (mouse Piwi-like), one of the three mouse PIWI family members, is indispensable for piRNA production, DNA methylation of retrotransposons presumably through the piRNA, and spermatogenesis. The biogenesis of piRNA has been divided into primary and secondary processing pathways; in both of these MILI is involved in mice. To analyze the molecular function of MILI in piRNA biogenesis, we utilized germline stem (GS) cells, which are derived from testicular stem cells and possess a spermatogonial phenotype. We established MILI-null GS cell lines and their revertant, MILI-rescued GS cells, by introducing the Mili gene with Sendai virus vector. Comparison of wild-type, MILI-null, and MILI-rescued GS cells revealed that GS cells were quite useful for analyzing the molecular mechanisms of piRNA production, especially the primary processing pathway. We found that glycerol-3-phosphate acyltransferase 2 (GPAT2), a mitochondrial outer membrane protein for lysophosphatidic acid, bound to MILI using the cells and that gene knockdown of GPAT2 brought about impaired piRNA production in GS cells. GPAT2 is not only one of the MILI bound proteins but also a protein essential for primary piRNA biogenesis. 相似文献
10.
11.
12.
淋病流行株外排系统与外膜通透性和多重耐药性的关系 总被引:2,自引:0,他引:2
探讨外排系统、外膜通透性与淋病流行株多重耐药性的关系。应用K—B法和琼脂稀释法从湛江地区分离出62株淋球菌多重耐药株。利用SDS—PAGE测定淋球菌外膜孔蛋白的表达;应用直接荧光法测定能量抑制剂加入前后淋球菌对抗生素的摄入和积累情况,比较耐药菌与敏感菌内膜泵蛋白表达的差异;利用煮沸法提取细菌DNA,PCR扩增mtrR基因,并对扩增产物测序,比较敏感株与多重耐药株的差异。结果5株多重耐药菌均有外膜孔蛋白表达的缺失或下降,同时伴有外排泵蛋白的表达;5株敏感淋球菌无mtrR的突变,10株多重耐药株均有mtrR基因的突变。表明外排系统、外膜通透性与淋病流行株的多重耐药性密切相关。 相似文献
13.
Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis
下载免费PDF全文

Thanassi DG Stathopoulos C Dodson K Geiger D Hultgren SJ 《Journal of bacteriology》2002,184(22):6260-6269
Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P pilus biogenesis by uropathogenic Escherichia coli. Structural analysis indicated PapC folds as a beta-barrel with short extracellular loops and extensive periplasmic domains. Several periplasmic regions were localized, including two domains containing conserved cysteine pairs. Functional analysis of deletion mutants revealed that the PapC C terminus was not required for insertion of the usher into the outer membrane or for proper folding. The usher C terminus was not necessary for interaction with chaperone-subunit complexes in vitro but was required for pilus biogenesis in vivo. Interestingly, coexpression of PapC C-terminal truncation mutants with the chromosomal fim gene cluster coding for type 1 pili allowed P pilus biogenesis in vivo. These studies suggest that chaperone-subunit complexes target an N-terminal domain of the usher and that subunit assembly into pili depends on a subsequent function provided by the usher C terminus. 相似文献
14.
Kramer RA Vandeputte-Rutten L de Roon GJ Gros P Dekker N Egmond MR 《FEBS letters》2001,505(3):426-430
Escherichia coli outer membrane protease OmpT has previously been classified as a serine protease with Ser(99) and His(212) as active site residues. The recently solved X-ray structure of the enzyme was inconsistent with this classification, and the involvement of a nucleophilic water molecule was proposed. Here, we substituted all conserved aspartate and glutamate residues by alanines and measured the residual enzymatic activities of the variants. Our results support the involvement of a nucleophilic water molecule that is activated by the Asp(210)/His(212) catalytic dyad. Activity is also strongly dependent on Asp(83) and Asp(85). Both may function in binding of the water molecule and/or oxyanion stabilization. The proposed mechanism implies a novel proteolytic catalytic site. 相似文献
15.
The solventogenic bacterium Clostridium acetobutylicum is the most important species of Clostridium used in the fermentation industry. However, the intolerance to butanol hampers the efficient production of solvents. Butanol toxicity has been attributed to the chaotropic effect on the cell membrane, but the knowledge on the effect of butanol on membrane associated proteins is quite limited. Using 2-DE combined with MALDI-TOF MS/MS and 1-DE integrated with LC-MS/MS, 341 proteins in the membrane fractions of cell lysate were identified, thus establishing the first comprehensive membrane proteome of C. acetobutylicum. The identified proteins are mainly involved in transport, cellular membrane/wall machinery, formation of surface coat and flagella, and energy metabolism. Comparative analysis on the membrane proteomes of the wild type strain DSM 1731 and its butanol-tolerant mutant Rh8 revealed 73 differentially expressed proteins. Hierarchical clustering analysis suggested that mutant Rh8 may have evolved a more stabilized membrane structure, and have developed a cost-efficient energy metabolism strategy, to cope with the butanol challenge. This comparative membrane proteomics study, together with our previous published work on comparative cytoplasmic proteomics, allows us to obtain a systemic understanding of the effect of butanol on cellular physiology of C. acetobutylicum. 相似文献
16.
Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae 总被引:3,自引:0,他引:3
下载免费PDF全文

The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65°C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane. 相似文献
17.
Becker T Wenz LS Krüger V Lehmann W Müller JM Goroncy L Zufall N Lithgow T Guiard B Chacinska A Wagner R Meisinger C Pfanner N 《The Journal of cell biology》2011,194(3):387-395
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments. 相似文献
18.
Comparative proteome analysis of breast cancer and normal breast 总被引:9,自引:0,他引:9
Luo Y Zhang J Liu Y Shaw AC Wang X Wu S Zeng X Chen J Gao Y Zheng D 《Molecular biotechnology》2005,29(3):233-244
Breast cancer is a leading cause of death for women. The underlying molecular mechanism is still not well understood. In this
study, two-dimensional gel electrophoresis combined with mass spectrometry was used to analyze changes in the proteome of
infiltrating ductal carcinoma compared to normal breast tissue. Ten sets of two-dimensional gels per experimental condition
were analyzed and more than 500 spots each were detected. This revealed 39 spots for which expression in breast cancer cells
were reproducibly altered more than twofold compared to normal controls (p<0.01). These spots represented 25 different proteins after identification using the database search after mass spectrometry,
comprising cell defense proteins, enzymes involved in glycolytic energy metabolism and homeostasis, protein folding and structural
proteins, proteins involved in cytoskeleton and cell motility, and proteins involved in other functions. In addition, 28 nondifferentially
expressed proteins with different functions were also mapped and identified, which might help to establish a two-dimensional
gel electrophoresis reference map of human breast cancer. Our study shows that proteomics offers a powerful methodology to
detect the proteins that show different expression patterns in breast cancer tissue and may provide an accurate molecular
classification. The differentially expressed proteins may be used as potential candidate markers for diagnostic purposes or
for determination of tumor sensitivity to therapy. The functional implications of the identified proteins are discussed. 相似文献
19.
Genetic analysis and characterization of a Caulobacter crescentus mutant defective in membrane biogenesis. 总被引:1,自引:5,他引:1
下载免费PDF全文

A mutant of Caulobacter crescentus has been isolated which has an auxotrophic requirement for unsaturated fatty acids or biotin for growth on medium containing glucose as the carbon source. This mutant exhibits a pleiotropic phenotype which includes (i) the auxotrophic requirement, (ii) cell death in cultures attempting to grow on glucose in the absence of fatty acids or biotin, and (iii) a major change in the outer membrane protein composition before cell death. This genetic lesion did not appear to affect directly a fatty acid biosynthetic reaction because fatty acid and phospholipid syntheses were found to continue in the absence of supplement. Oleic acid repressed fatty acid biosynthesis and induced fatty acid degradation in the wild-type parent, AE5000 . The mutant strain, AE6000 , was altered in both of these regulatory functions. The AE6000 mutant also showed specific inhibition of the synthesis of outer membrane and flagellar proteins. Total phospholipid, DNA, RNA, and protein syntheses were unaffected. The multiple phenotypes of the AE6000 mutant were found to cosegregate and to map between hclA and lacA on the C. crescentus chromosome. The defect in this mutant appears to be associated with a regulatory function in membrane biogenesis and provides evidence for a direct coordination of membrane protein synthesis and lipid metabolism in C. crescentus. 相似文献
20.
The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria 总被引:20,自引:0,他引:20
Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane. 相似文献