首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3′-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2′ and 3′ carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn2+ supporting about 10 times faster unwinding than Mg2+. Unlike Mg2+, Mn2+ does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.  相似文献   

2.
Translocation of double-stranded DNA into a preformed capsid by tailed bacteriophages is driven by powerful motors assembled at the special portal vertex. The motor is thought to drive processive cycles of DNA binding, movement, and release to package the viral genome. In phage T4, there is evidence that the large terminase protein, gene product 17 (gp17), assembles into a multisubunit motor and translocates DNA by an inchworm mechanism. gp17 consists of two domains; an N-terminal ATPase domain (amino acids 1-360) that powers translocation of DNA, and a C-terminal nuclease domain (amino acids 361-610) that cuts concatemeric DNA to generate a headful-size viral genome. While the functional motifs of ATPase and nuclease have been well defined and the ATPase atomic structure has been solved, the DNA binding motif(s) responsible for viral DNA recognition, cutting, and translocation are unknown. Here we report the first evidence for the presence of a double-stranded DNA binding activity in the gp17 ATPase domain. Binding to DNA is sensitive to Mg2+ and salt, but not the type of DNA used. DNA fragments as short as 20 bp can bind to the ATPase but preferential binding was observed to DNA greater than 1 kb. A high molecular weight ATPase-DNA complex was isolated by gel filtration, suggesting oligomerization of ATPase following DNA interaction. DNA binding was not observed with the full-length gp17, or the C-terminal nuclease domain. The small terminase protein, gp16, inhibited DNA binding, which was further accentuated by ATP. The presence of a DNA binding site in the ATPase domain and its binding properties implicate a role in the DNA packaging mechanism.  相似文献   

3.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

4.
Living cells possess a panel of specialized DNA polymerases that deal with the large diversity of DNA lesions that occur in their genomes. How specialized DNA polymerases gain access to the replication intermediate in the vicinity of the lesion is unknown. Using a model system in which a single replication blocking lesion can be bypassed concurrently by two pathways that leave distinct molecular signatures, we analyzed the complex interplay among replicative and specialized DNA polymerases. The system involves a single N-2-acetylaminofluorene guanine adduct within the NarI frameshift hot spot that can be bypassed concurrently by Pol II or Pol V, yielding a −2 frameshift or an error-free bypass product, respectively. Reconstitution of the two pathways using purified DNA polymerases Pol III, Pol II and Pol V and a set of essential accessory factors was achieved under conditions that recapitulate the known in vivo requirements. With this approach, we have identified the key replication intermediates that are used preferentially by Pol II and Pol V, respectively. Using single-hit conditions, we show that the β-clamp is critical by increasing the processivity of Pol II during elongation of the slipped −2 frameshift intermediate by one nucleotide which, surprisingly, is enough to support subsequent elongation by Pol III rather than degradation. Finally, the proofreading activity of the replicative polymerase prevents the formation of a Pol II-mediated −1 frameshift product. In conclusion, failure or success of TLS pathways appears to be the net result of a complex interplay among DNA polymerases and accessory factors.  相似文献   

5.
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O6-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n + 3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.  相似文献   

6.
Helicase loading factors are thought to transfer the hexameric ring-shaped helicases onto the replication fork during DNA replication. However, the mechanism of helicase transfer onto DNA remains unclear. In Bacillus subtilis, the protein DnaI, which belongs to the AAA+ family of ATPases, is responsible for delivering the hexameric helicase DnaC onto DNA. Here we investigated the interaction between DnaC and DnaI from Geobacillus kaustophilus HTA426 (GkDnaC and GkDnaI, respectively) and determined that GkDnaI forms a stable complex with GkDnaC with an apparent stoichiometry of GkDnaC6-GkDnaI6 in the absence of ATP. Surface plasmon resonance analysis indicated that GkDnaI facilitates loading of GkDnaC onto single-stranded DNA (ssDNA) and supports complex formation with ssDNA in the presence of ATP. Additionally, the GkDnaI C-terminal AAA+ domain alone could bind ssDNA, and binding was modulated by nucleotides. We also determined the crystal structure of the C-terminal AAA+ domain of GkDnaI in complex with ADP at 2.5 Å resolution. The structure not only delineates the binding of ADP in the expected Walker A and B motifs but also reveals a positively charged region that may be involved in ssDNA binding. These findings provide insight into the mechanism of replicative helicase loading onto ssDNA.  相似文献   

7.
Rad54 is a key component of the eukaryotic recombination machinery. Its presence in DNA strand-exchange reactions in vitro results in a significant stimulation of the overall reaction rate. Using untagged Rad54, we show that this stimulation can be attributed to enhancement of the formation of a key reaction intermediate known as DNA networks. Using a novel, single DNA molecule, dual-optical tweezers approach we show how Rad54 stimulates DNA network formation. We discovered that Rad54 oligomers possess a unique ability to cross-bridge or bind double-stranded DNA molecules positioned in close proximity. Further, Rad54 oligomers rapidly translocate double-stranded DNA while simultaneously inducing topological loops in the DNA at the locus of the oligomer. The combination of the cross-bridging and double-stranded DNA translocation activities of Rad54 stimulates the formation of DNA networks, leading to rapid and efficient DNA strand exchange by Rad51.  相似文献   

8.
The ability of subunit C of eukaryotic V-ATPases to bind ADP and ATP is demonstrated by photoaffinity labeling and fluorescence correlation spectroscopy (FCS). Quantitation of the photoaffinity and the FCS data indicate that the ATP-analogues bind more weakly to subunit C than the ADP-analogues. Site-directed mutagenesis and N-terminal sequencing of subunit C from Arabidopsis (VHA-C) and yeast (Vma5p) have been used to map the C-terminal region of subunit C as the nucleotide-binding site. Tryptophan fluorescence quenching and decreased susceptibility to tryptic digestion of subunit C after binding of different nucleotides provides evidence for structural changes in this subunit caused by nucleotide-binding.  相似文献   

9.
Fesselin is a natively unfolded protein that is abundant in avian smooth muscle. Like many natively unfolded proteins, fesselin has multiple binding partners including actin, myosin, calmodulin and α-actinin. Fesselin accelerates actin polymerization and bundles actin. These and other observations suggest that fesselin is a component of the cytoskeleton. We have now cloned fesselin and have determined the cDNA derived amino acid sequence. We verified parts of the sequence by Edman analysis and by mass spectroscopy. Our results confirmed fesselin is homologous to human synaptopodin 2 and belongs to the synaptopodin family of proteins.  相似文献   

10.
11.
Elastic behavior of RecA-DNA helical filaments   总被引:1,自引:0,他引:1  
Escherichia coli RecA protein forms a right-handed helical filament with DNA molecules and has an ATP-dependent activity that exchanges homologous strands between single-stranded DNA (ssDNA) and duplex DNA. We show that the RecA-ssDNA filamentous complex is an elastic helical molecule whose length is controlled by the binding and release of nucleotide cofactors. RecA-ssDNA filaments were fluorescently labelled and attached to a glass surface inside a flow chamber. When the chamber solution was replaced by a buffer solution without nucleotide cofactors, the RecA-ssDNA filament rapidly contracted approximately 0.68-fold with partial filament dissociation. The contracted filament elongated up to 1.25-fold when a buffer solution containing ATPgammaS was injected, and elongated up to 1.17-fold when a buffer solution containing ATP or dATP was injected. This contraction-elongation behavior was able to be repeated by the successive injection of dATP and non-nucleotide buffers. We propose that this elastic motion couples to the elastic motion and/or the twisting rotation of DNA strands within the filament by adjusting their helical phases.  相似文献   

12.
We measured the nucleotide turnover rate of myosin in tarantula leg muscle fibers by observing single turnovers of the fluorescent nucleotide analog 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate, as monitored by the decrease in fluorescence when 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-triphosphate (mantATP) is replaced by ATP in a chase experiment. We find a multiexponential process with approximately two-thirds of the myosin showing a very slow nucleotide turnover time constant (∼ 30 min). This slow-turnover state is termed the super-relaxed state (SRX). If fibers are incubated in 2′-/3′-O-(N′-methylanthraniloyl)adenosine-5′-O-diphosphate and chased with ADP, the SRX is not seen, indicating that trinucleotide-relaxed myosins are responsible for the SRX. Phosphorylation of the myosin regulatory light chain eliminates the fraction of myosin with a very long lifetime. The data imply that the very long-lived SRX in tarantula fibers is a highly novel adaptation for energy conservation in an animal that spends extremely long periods of time in a quiescent state employing a lie-in-wait hunting strategy. The presence of the SRX measured here correlates well with the binding of myosin heads to the core of the thick filament in a structure known as the “interacting-heads motif,” observed previously by electron microscopy. Both the structural array and the long-lived SRX require relaxed filaments or relaxed fibers, both are lost upon myosin phosphorylation, and both appear to be more stable in tarantula than in vertebrate skeletal or vertebrate cardiac preparations.  相似文献   

13.
14.
Interactions of the polymerase X of African swine fever virus with the double-stranded DNA (dsDNA) have been studied with fluorescent dsDNA oligomers, using quantitative fluorescence titrations, analytical ultracentrifugation, and fluorescence energy transfer techniques. Studies with unmodified dsDNAs were performed, using competition titration method. ASV pol X binds the dsDNA with a site-size of n=10(+/-2) base-pairs, which is significantly shorter than the total site-size of 16(+/-2) nucleotides of the enzyme-ssDNA complex. The small site size indicates that the enzyme binds the dsDNA exclusively using the proper DNA-binding subsite. Fluorescence energy transfer studies between the tryptophan residue W92 and the acceptor, located at the 5' or 3' end of the dsDNA, suggest strongly that the proper DNA-binding subsite is located on the non-catalytic C-terminal domain. Moreover, intrinsic interactions with the dsDNA 10-mer or 20-mer are accompanied by the same net number of ions released, independent of the length of the DNA, indicating the same length of the DNA engaged in the complex. The dsDNA intrinsic affinity is about two orders of magnitude higher than the ssDNA affinity, indicating that the proper DNA-binding subsite is, in fact, the specific dsDNA-binding site. Surprisingly, ASFV pol X binds the dsDNA with significant positive cooperativity, which results from protein-protein interactions. Cooperative interactions are accompanied by the net ion release, with anions participating in the ion-exchange process. The significance of these results for ASFV pol X activity in the recognition of damaged DNA is discussed.  相似文献   

15.
The essential minichromosome maintenance (Mcm) proteins Mcm2 through Mcm7 likely comprise the replicative helicase in eukaryotes. In addition to Mcm2-7, other subcomplexes, including one comprising Mcm4, Mcm6, and Mcm7, unwind DNA. Using Mcm4/6/7 as a tool, we reveal a role for nucleotide binding by Saccharomyces cerevisiae Mcm2 in modulating DNA binding by Mcm complexes. Previous studies have shown that Mcm2 inhibits DNA unwinding by Mcm4/6/7. Here, we show that interaction of Mcm2 and Mcm4/6/7 is not sufficient for inhibition; rather, Mcm2 requires nucleotides for its regulatory role. An Mcm2 mutant that is defective for ATP hydrolysis (K549A), as well as ATP analogues, was used to show that ADP binding by Mcm2 is required to inhibit DNA binding and unwinding by Mcm4/6/7. This Mcm2-mediated regulation of Mcm4/6/7 is independent of Mcm3/5. Furthermore, the importance of ATP hydrolysis by Mcm2 to the regulation of the native complex was apparent from the altered DNA binding properties of Mcm2KA-7. Moreover, together with the finding that Mcm2K549A does not support yeast viability, these results indicate that the nucleotide-bound state of Mcm2 is critical in regulating the activities of Mcm4/6/7 and Mcm2-7 complexes.  相似文献   

16.
Mycobacterium smegmatis RecA and its nucleotide complexes crystallize in three different, but closely related, forms characterized by specific ranges of unit cell dimensions. The six crystals reported here and five reported earlier, all grown under the same or very similar conditions, belong to these three forms, all in space group P6(1). They include one obtained by reducing relative humidity around the crystal. In all crystals, RecA monomers form filaments around a 6(1) screw axis. Thus, the c-dimension of the crystal corresponds to the pitch of the RecA filament. As reported for Escherichia coli RecA, the variation in the pitch among the three forms correlates well with the motion of the C-terminal domain of the RecA monomers with respect to the main domain. The domain motion is compatible with formation of inactive as well as active RecA filaments involving monomers with a fully ordered C domain. It does not appear to influence the movement upon nucleotide-binding of the switch residue, which is believed to provide the trigger for transmitting the effect of nucleotide binding to the DNA-binding region. Interestingly, partial dehydration of the crystal results in the movement of the residue similar to that caused by nucleotide binding. The ordering of the DNA-binding loops, which present ensembles of conformations, is also unaffected by domain motion. The conformation of loop L2 appears to depend upon nucleotide binding, presumably on account of the movement of the switch residue that forms part of the loop. The conformations of loops L1 and L2 are correlated and have implications for intermolecular communications within the RecA filament. The structures resulting from different orientations of the C domain and different conformations of the DNA-binding loops appear to represent snapshots of the RecA at different phases of activity, and provide insights into the mechanism of action of RecA.  相似文献   

17.
The model carcinogen N-2-acetylaminofluorene covalently binds to the C8 position of guanine to form two adducts, the N-(2′-deoxyguanosine-8-yl)-aminofluorene (G-AF) and the N-2-(2′-deoxyguanosine-8-yl)-acetylaminofluorene (G-AAF). Although they are chemically closely related, their biological effects are strongly different and they are processed by different damage tolerance pathways. G-AF is bypassed by replicative and high-fidelity polymerases, while specialized polymerases ensure synthesis past of G-AAF. We used the DNA polymerase I fragment of a Bacillus stearothermophilus strain as a model for a high-fidelity polymerase to study the kinetics of incorporation of deoxy-CTP (dCTP) opposite a single G-AF. Pre-steady-state kinetic experiments revealed a drastic reduction in dCTP incorporation performed by the G-AF-modified ternary complex. Two populations of these ternary complexes were identified: (i) a minor productive fraction (20%) that readily incorporates dCTP opposite the G-AF adduct with a rate similar to that measured for the adduct-free ternary complexes and (ii) a major fraction of unproductive complexes (80%) that slowly evolve into productive ones. In the light of structural data, we suggest that this slow rate reflects the translocation of the modified base within the active site, from the pre-insertion site into the insertion site. By making this translocation rate limiting, the G-AF lesion reveals a novel kinetic step occurring after dNTP binding and before chemistry.  相似文献   

18.
1.
1. The photooxidation of 3,3′-diaminobenzidine was investigated in whole cells of the wild-type and two mutant strains of Chlamydomonas reinhardii and in four species of blue-green algae.  相似文献   

19.
Rho termination factor is an essential hexameric helicase responsible for terminating 20-50% of all mRNA synthesis in Escherichia coli. We used single-molecule force spectroscopy to investigate Rho-RNA binding interactions at the Rho utilization site of the λtR1 terminator. Our results are consistent with Rho complexes adopting two states: one that binds 57 ± 2 nt of RNA across all six of the Rho primary binding sites, and another that binds 85 ± 2 nt at the six primary sites plus a single secondary site situated at the center of the hexamer. The single-molecule data serve to establish that Rho translocates 5′ → 3′ toward RNA polymerase (RNAP) by a tethered-tracking mechanism, looping out the intervening RNA between the Rho utilization site and RNAP. These findings lead to a general model for Rho binding and translocation and establish a novel experimental approach that should facilitate additional single-molecule studies of RNA-binding proteins.  相似文献   

20.
We have compared the physical properties of a 15.51-kb constitutive heterochromatin segment and a 16.17-kb facultative heterochromatin segment that form part of the chicken β-globin locus. These segments were excised from an avian erythroleukemia cell line by restriction enzyme digestion and released from the nucleus, thus allowing measurement of the sedimentation coefficients by use of calibrated sucrose gradients. A determination of the buoyant density of the cross-linked particle in CsCl led to the total mass of the particles and their frictional coefficients, f. Despite the slight differences in nucleosome density, the measured value of f for both fragments was consistent with a rodlike particle having a diameter of 33-45 nm and a length corresponding to approximately six to seven nucleosomes per 11-nm turn. At higher ionic strengths we found no evidence of any abrupt conformational change, demonstrating that these chromatin fragments released from the nucleus did not assume the more compact conformations recently described for some reconstituted structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号