首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitochondrial permeability transition occurs through a Ca2+-dependent opening of atransmembrane pore, whose identity has been attributed to that of the adenine nucleotide translocase(ANT). In this work, we induced permeability transition by adding 0.5 M carboxyatractyloside.The process was evaluated analyzing Ca2+ efflux, a drop in transmembrane electric gradient,and swelling. We found that the amphiphyllic cations octylguanidine and octylamine, at theconcentration of 100 M, inhibited, almost completely, nonspecific membrane permeability.Hexylguanidine, hexylamine, as well as guanidine chloride and hydroxylamine failed to doso. The inhibition was reversed after the addition of 40 mM Li+, Na+ K+,Rb+, or Cs+; K+ wasthe most effective. We propose that the positive charge of the amines interact with negativecharges of membrane proteins, more likely the ADP/ATP carrier, while the alkyl chain penetratesinto the hydrophobic milieu of the inner membrane, fixing the reagent.  相似文献   

2.
Redox Regulation of the Mitochondrial Permeability Transition Pore   总被引:5,自引:0,他引:5  
The recent data on redox regulation of the mitochondrial cyclosporin-sensitive pore are reviewed here. They indicate that the pore is modulated by the redox state of pyridine nucleotides and glutathione at two independent sites. Special attention is paid to experimental approaches for studying this phenomenon in isolated mitochondria. The relation between oxidative stress and the opening of the mitochondrial pore in some cases of cell injury and in programmed cell death (apoptosis) is discussed.  相似文献   

3.
4.
Role of the Mitochondrial Permeability Transition Pore in Apoptosis   总被引:11,自引:0,他引:11  
Mitochondrial permeability transition (PT) involves the formation of proteaceous, regulated pores, probably by apposition of inner and outer mitochondrial membrane proteins which cooperate to form the mitochondrial megachannel (=mitochondrial PT pore). PT has important metabolic consequences, namely the collapse of the mitochondrial transmembrane potential, uncoupling of the respiratory chain, hyperproduction of superoxide anions, disruption of mitochondrial biogenesis, outflow of matrix calcium and glutathione, and release of soluble intermembrane proteins. Recent evidence suggests that PT is a critical, rate limiting event of apoptosis (programmed cell death): (i) induction of PT suffices to cause apoptosis; (ii) one of the immediate consequences of PT, disruption of the mitochondrial transmembrane potential (m), is a constant feature of early apoptosis; (iii) prevention of PT impedes the m collapse as well as all other features of apoptosis at the levels of the cytoplasma, the nucleus, and the plasma membrane; (iv) PT is modulated by members of the apoptosis-regulatory bcl-2 gene family. Recent data suggest that the acquisition of the apoptotic phenotype, including characteristic changes in nuclear morphology and biochemistry (chromatin condensation and DNA fragmentation), depends on the action of apoptogenic proteins released from the mitochondrial intermembrane space.  相似文献   

5.
活性氧、线粒体通透性转换与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是真核细胞中非常重要的细胞器,细胞中的活性氧等自由基主要来源于此,线粒体膜的通透性转换(mitochondrial permeability transition,MPT)及其孔道(mitochondrialpermeability transition pore,MPTP)更是在内源性细胞凋亡中发挥了关键作用。持续性的线粒体膜通透性转换在凋亡的效应阶段起决定性作用,可介导细胞色素c等促凋亡因子从线粒体释放到胞浆中,进一步激活下游的信号通路,导致细胞不可逆地走向凋亡。瞬时性的线粒体膜通透性转换及其偶联的线粒体局部的活性氧爆发同样具有促凋亡的作用。线粒体通透性孔道的开放释放出大量活性氧,这些活性氧又能够进一步激活该孔道,以正反馈的形式进一步加剧孔道的打开,放大凋亡信号。活性氧、线粒体通透性转换与细胞凋亡之间具有密不可分的联系,本文根据已知的研究结果集中讨论了这三者的关系,并着重论述了该领域中的最新发现和成果。  相似文献   

6.
The Mitochondrial Permeability Transition as a Target for Neuroprotection   总被引:4,自引:0,他引:4  
Mitochondria serve as checkpoints and amplifiers on cell death pathways. In the central nervous system, mitochondrial involvement seems essential for normal expression of cell death phenotypes, and interference with these pathways thus seems a reasonable approach to neuroprotection. We have been involved in examining the potential involvement of the mitochondrial permeability transition (mPT) as one of several possible mechanisms by which mitochondria may be drawn into these death cascades. This possibility, though still controversial, is supported by evidence that factors that may stimulate mPT induction are associated with some forms of cell death (e.g., in stroke) and are modulated by diseases of the central nervous system (e.g., Huntington's). Evidence of neuroprotection seen with compounds such as N-Met-Val cyclosporine also support this possibility.  相似文献   

7.
The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of the mitochondrial permeability transition (MPT). We studied the inhibitory effects of adenine nucleotides on brain MPT by measuring mitochondrial swelling and Ca2+ and cytochrome c release. We observed that in the presence of either ADP or ATP, at 250 μM, brain mitochondria accumulated more than 1 μmol Ca2+ × mg protein−1. ADP or ATP also prevented Ca2+-induced mitochondrial swelling and cytochrome c release. Interestingly, ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, half-maximal inhibitory values (K i) of 4.5 and 98 μM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia/reoxygenation did not interfere with the inhibitory effect of ADP on Ca2+-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT whereas ATP is a weaker inhibitor of this phenomenon. Our results suggest that ADP can have an important protective role against MPT-mediated tissue damage under conditions of brain ischemia and hypoglycemia.  相似文献   

8.
Resveratrol (RSV), a natural polyphenolic antioxidant, has been considered an anticarcinogenic agent as it triggers tumor cell apoptosis through activation of the mitochondrial pathway. In our study, the effects of RSV on mitochondria, especially on the mitochondrial permeability transition (MPT) process, were investigated by multiple methods. We found that RSV induced a collapse of membrane potential and matrix swelling related to MPT. We further demonstrated that Ca2+ was necessary for this RSV-induced MPT opening. In addition, RSV induced the inner membrane permeabilization to H+ and K+, the depression of respiration and changes in membrane fluidity. The results suggested that RSV-induced MPT was accompanied by mitochondrial dysfunction. But the prohibition on lipid peroxidation and different effects of low- and high-dose RSV on membrane fluidity and respiration showed that the interaction of RSV and the mitochondria could not be the result of a single simple mechanism.  相似文献   

9.
We have provided evidence that mitochondrial membrane permeability transition induced by inorganic phosphate, uncouplers or prooxidants such as t-butyl hydroperoxide and diamide is caused by a Ca2+-stimulated production of reactive oxygen species (ROS) by the respiratory chain, at the level of the coenzyme Q. The ROS attack to membrane protein thiols produces cross-linkage reactions, that may open membrane pores upon Ca2+ binding. Studies with submitochondrial particles have demonstrated that the binding of Ca2+ to these particles (possibly to cardiolipin) induces lipid lateral phase separation detected by electron paramagnetic resonance experiments exploying stearic acids spin labels. This condition leads to a disorganization of respiratory chain components, favoring ROS production and consequent protein and lipid oxidation.  相似文献   

10.
High plasma level of triglycerides (TGs) is a common feature in atherosclerosis, obesity, diabetes, alcoholism, stress, and infection. Since mitochondria have been implicated in cell death under a variety of metabolic disorders, we examined liver mitochondrial functions in hypertriglyceridemic transgenic mice. Hypertriglyceridemia increased resting respiration and predisposed to mitochondrial permeability transition (MPT). Ciprofibrate therapy reduced plasma TG levels, normalized respiration, and prevented MPT. The higher resting respiration in transgenic mitochondria remained in the presence of the adenine nucleotide carrier inhibitor, carboxyatractyloside, bovine serum albumin, and the uncoupling proteins (UCPs) inhibitor, GDP. UCP2 content was similar in both control and transgenic mitochondria. We propose that faster resting respiration represents a regulated adaptation to oxidize excess free fatty acid in the transgenic mice.  相似文献   

11.
目的:线粒体通透性转换孔通透性改变是导致缺血再灌注损伤的原因,线粒体功能的致命性改变最终引起细胞凋亡,本研究旨在观察线粒体通透性转换孔(mitochondrial permeability transition pore,MPTP)在缺血再灌注及缺血预处理脑保护中的作用;方法:将体外培养8天的海马神经元细胞分为五组,正常对照组(A组),缺血再灌注组(B组),缺血预处理+缺血再灌注组(C组),苍术苷+缺血再灌注组(D组),缺血预处理+苍术苷+缺血再灌注组(E组)。使用流式细胞术检测各组细胞凋亡率,罗丹明123染色流式细胞术检测线粒体膜电位,Western-blot检测Bcl-2,Bax的表达。结果:与A组比较,其余四组线粒体膜电位均降低,神经元凋亡率升高(P〈0.05);与B组比较,c组线粒体膜电位升高,神经元凋亡率升高,Bcl-2表达上调,Bax表达下调(P〈0.05);与c组比较,E组粒体膜电位降低,神经元凋亡率升高,Bcl.2表达下调,Bax表达上调(P〈0.05)。结论:我们在细胞及分子生物学水平对MPTP及缺血预处理的研究后发现,缺血预处理能有效减轻海马神经元缺血再灌注损伤,抑制缺血再灌注后神经细胞凋亡,其机制与抑制MPTP的开放有关。  相似文献   

12.
In the process of neurogenesis, neural progenitor cells (NPCs) cease dividing and differentiate into postmitotic neurons that grow dendrites and an axon, become excitable, and establish synapses with other neurons. Mitochondrial biogenesis and aerobic metabolism provide energy substrates required to support the differentiation, growth and synaptic activity of neurons. Mitochondria may also serve signaling functions and, in this regard, it was recently reported that mitochondria can generate rapid bursts of superoxide (superoxide flashes), the frequency of which changes in response to environmental conditions and signals including oxygen levels and Ca2+ fluxes. Here we show that the frequency of mitochondrial superoxide flashes increases as embryonic cerebral cortical neurons differentiate from NPCs, and provide evidence that the superoxide flashes serve a signaling function that is critical for the differentiation process. The superoxide flashes are mediated by mitochondrial permeability transition pore (mPTP) opening, and pharmacological inhibition of the mPTP suppresses neuronal differentiation. Moreover, superoxide flashes and neuronal differentiation are inhibited by scavenging of mitochondrial superoxide. Conversely, manipulations that increase superoxide flash frequency accelerate neuronal differentiation. Our findings reveal a regulatory role for mitochondrial superoxide flashes, mediated by mPTP opening, in neuronal differentiation.  相似文献   

13.
The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor β-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10–40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo.  相似文献   

14.
This review summarizes recent progress on the regulation of the mitochondrial permeabilitytransition pore, an inner membrane channel that may play a role in cell death. We brieflycover its key control points as emerged over the last few years from studies on isolatedmitochondria; and describe in some detail our recent results indicating that the pore is modulatedby the respiratory chain complex I and can be specifically blocked by selected ubiquinoneanalogs. We discuss the potential relevance of these findings for the structural definition ofthe permeability transition pore and illustrate the pharmacological perspectives they offer indiseases where mitochondrial dysfunction is suspected to play a key role.  相似文献   

15.
Cerium has been widely used as fertilizer and feed additives in agriculture, but it might finally impair human health by food chain accumulation with its dosage increased in environmental and crops samples. To resolve the conflict, we investigated the effects of Ce(III) on isolated rice mitochondrial permeability transition (MPT) by examining mitochondrial swelling, transmembrane potential, membrane fluidity with spectroscopy, and observing the mitochondrial ultrastructure, meanwhile, the interaction site(s) and mechanism between Ce(III) and mitochondria were also studied. The results showed that the low level of Ce(III) had little effect on rice MPT, however, the higher level of Ce(III) could induce rice MPT, and the thiol (?SH) groups of membrane proteins (defined as “S” site) matched by Ce(III)-triggered rice MPT pore opening.  相似文献   

16.
Purified F-ATP synthase dimers of yeast mitochondria display Ca2+-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca2+ ionophore ETH129, which allows electrophoretic Ca2+ uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.  相似文献   

17.
Both reactive dopamine metabolites and mitochondrial dysfunction have been implicated in the neurodegeneration of Parkinson's disease. Dopamine metabolites, dopamine quinone and reactive oxygen species, can directly alter protein function by oxidative modifications, and several mitochondrial proteins may be targets of this oxidative damage. In this study, we examined, using isolated brain mitochondria, whether dopamine oxidation products alter mitochondrial function. We found that exposure to dopamine quinone caused a large increase in mitochondrial resting state 4 respiration. This effect was prevented by GSH but not superoxide dismutase and catalase. In contrast, exposure to dopamine and monoamine oxidase-generated hydrogen peroxide resulted in a decrease in active state 3 respiration. This inhibition was prevented by both pargyline and catalase. We also examined the effects of dopamine oxidation products on the opening of the mitochondrial permeability transition pore, which has been implicated in neuronal cell death. Dopamine oxidation to dopamine quinone caused a significant increase in swelling of brain and liver mitochondria. This was inhibited by both the pore inhibitor cyclosporin A and GSH, suggesting that swelling was due to pore opening and related to dopamine quinone formation. In contrast, dopamine and endogenous monoamine oxidase had no effect on mitochondrial swelling. These findings suggest that mitochondrial dysfunction induced by products of dopamine oxidation may be involved in neurodegenerative conditions such as Parkinson's disease and methamphetamine-induced neurotoxicity.  相似文献   

18.
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.  相似文献   

19.
The permeability transition pore (PTP) is a Ca2+-sensitive mitochondrial inner membrane channel involved in several models of cell death. Because the matrix concentration of PTP regulatory factors depends on matrix volume, we have investigated the role of the mitochondrial volume in PTP regulation. By incubating rat liver mitochondria in media of different osmolarity, we found that the Ca2+ threshold required for PTP opening dramatically increased when mitochondrial volume decreased relative to the standard condition. This shrinkage-induced PTP inhibition was not related to the observed changes in protonmotive force, or pyridine nucleotide redox state and persisted when mitochondria were depleted of adenine nucleotides. On the other hand, mitochondrial volume did not affect PTP regulation when mitochondria were depleted of Mg2+. By studying the effects of Mg2+, cyclosporin A (CsA) and ubiquinone 0 (Ub0) on PTP regulation, we found that mitochondrial shrinkage increased the efficacy of Mg2+ and Ub0 at PTP inhibition, whereas it decreased that of CsA. The ability of mitochondrial volume to alter the activity of several PTP regulators represents a hitherto unrecognized characteristic of the pore that might lead to a new approach for its pharmacological modulation.  相似文献   

20.
Abstract: Isolated rat CNS mitochondria and cultured cortical astrocytes were examined for behavior indicative of a mitochondrial permeability transition (mPT). Exposure of isolated CNS mitochondria to elevated calcium or phosphate or both produced loss of absorbance indicative of mitochondrial swelling. The absorbance decreases were prevented by ADP and Mg2+ and reduced by cyclosporin A, dithiothreitol, and N -ethylmaleimide. Ruthenium red prevented calcium cycling-induced, but only attenuated phosphate-induced losses of absorbance. In cultured astrocytes permeabilized with digitonin or treated with the calcium ionophore, 4-bromo-A23187, elevations of external calcium altered mitochondrial morphology visualized with the dye, JC-1, from rod-like to rounded, swollen structures. Similar changes were observed in digitonin-permeabilized astrocytes exposed to phosphate. The incidence of calcium-induced changes in astrocyte mitochondria was prevented by Mg2+ and pretreatment with dithiothreitol and N -ethylmaleimide, and was reduced by cyclosporin A, ADP, and butacaine alone or in combinations. Ruthenium red and the Na+/Ca2+ exchange inhibitor CGP 37157 blocked calcium cycling and prevented mitochondrial shape changes in digitonin-treated, but not ionophore-treated astrocytes. Thus, the demonstrated induction conditions and pharmacological profile indicated the existence of an mPT in brain mitochondria. The mPT occurred consequent to activation of calcium cycling-dependent and -independent pathways. Induction of an mPT could contribute to neuronal injury following ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号