首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+).  相似文献   

2.
Cui J  Aldrich RW 《Biochemistry》2000,39(50):15612-15619
The activation of BK type Ca(2+)-activated K(+) channels depends on both voltage and Ca(2+). We studied three point mutations in the putative voltage sensor S4 or S4-S5 linker regions in the mslo1 BK channels to explore the relationship between voltage and Ca(2+) in activating the channel. These mutations reduced the steepness of the open probability - voltage (P(o) - V) relation and increased the shift of the P(o) - V relations on the voltage axis in response to increases in the calcium concentration. It is striking that these two effects were reciprocally related for all three mutations, despite different effects of the mutations on other aspects of the voltage dependence of channel gating. This reciprocal relationship suggests strongly that the free energy contributions to channel activation provided by voltage and by calcium binding are simply additive. We conclude that the Ca(2+) binding sites and the voltage sensors do not directly interact. Rather they both affect the mslo1 channel opening through an allosteric mechanism, by influencing the conformational change between the closed and open conformations. The mutations changed the channel's voltage dependence with little effect on its Ca(2+) affinitiy.  相似文献   

3.
4.
5.
We examined the ionic mechanisms underlying the responses of canine trachealis to superoxide (generated in vitro by using xanthine oxidase or added exogenously) and peroxide (generated spontaneously in vitro by the dismutation of superoxide or added exogenously). Although neither had any effect on resting tone, both triggered relaxations in carbachol-precontracted tissues. These relaxations were eliminated by catalase but were much less sensitive to the hydroxyl radical scavenger dimethylthiourea, indicating they were mediated primarily by peroxide. These relaxations were decreased in magnitude and/or slowed by nifedipine (10(-6) M), ouabain (10(-6) M), or tetraethylammonium (25 mM), but not by 4-aminopyridine (5 mM), and were small or absent in tissues precontracted with 30 mM KCl. Finally, peroxide triggered membrane hyperpolarization and elevated cytosolic concentration of Ca(2+) (primarily via release from the internal store). Thus peroxide-mediated relaxations seem to involve Ca(2+) release, opening of Ca(2+)-dependent K(+) channels, hyperpolarization, closure of Ca(2+) channels, and relaxation. In addition, some other free radical (hydroxyl radical?) may activate the Na(+)-K(+) pump, also hyperpolarizing the membrane and causing relaxation.  相似文献   

6.
The c-jun gene is a major regulator of proliferative and stress responses of both normal and transformed cells. In general, during immortalization/transformation c-jun cooperates with oncogenic signals rather than acting as an oncogene itself. Here we report a novel example of this cooperation, the requirement for c-jun to sustain expression of the matrix metalloproteinase-2 (MMP-2) gene in cells immortalized by SV40 large T-antigen (TAg). MMP-2 encodes a type IV collagenase that is secreted by cells within normal and tumor microenvironments. We used wild-type and c-jun null primary and TAg-immortalized mouse embryonic fibroblasts (mEFs) to investigate the importance of c-jun for the regulation of this activity, and observed that c-jun is essential for MMP-2 expression in immortalized but not primary mEFs. This finding directly demonstrates a cooperative interaction of c-jun with an oncogene, and suggests that TAg dependent immortalization/transformation may require other c-Jun/AP-1-dependent genes.  相似文献   

7.
We tested whether activation of inwardly rectifying K(+) (Kir) channels, Na(+)-K(+)-ATPase, or nitric oxide synthase (NOS) play a role in K(+)-induced dilatation of the rat basilar artery in vivo. When cerebrospinal fluid [K(+)] was elevated from 3 to 5, 10, 15, 20, and 30 mM, a reproducible concentration-dependent vasodilator response was elicited (change in diameter = 9 +/- 1, 27 +/- 4, 35 +/- 4, 43 +/- 12, and 47 +/- 16%, respectively). Responses to K(+) were inhibited by approximately 50% by the Kir channel inhibitor BaCl(2) (30 and 100 microM). In contrast, neither ouabain (1-100 microM, a Na(+)-K(+)-ATPase inhibitor) nor N(G)-nitro-L-arginine (30 microM, a NOS inhibitor) had any effect on K(+)-induced vasodilatation. These concentrations of K(+) also hyperpolarized smooth muscle in isolated segments of basilar artery, and these hyperpolarizations were virtually abolished by 30 microM BaCl(2). RT-PCR experiments confirmed the presence of mRNA for Kir2.1 in the basilar artery. Thus K(+)-induced dilatation of the basilar artery in vivo appears to partly involve hyperpolarization mediated by Kir channel activity and possibly another mechanism that does not involve hyperpolarization, activation of Na(+)-K(+)-ATPase, or NOS.  相似文献   

8.
9.
A synthetic Cl(-) channel-forming peptide, C-K4-M2GlyR, applied to the apical membrane of human epithelial cell monolayers induces transepithelial Cl(-) and fluid secretion. The sequence of the core peptide, M2GlyR, corresponds to the second membrane-spanning region of the glycine receptor, a domain thought to line the pore of the ligand-gated Cl(-) channel. Using a pharmacological approach, we show that the flux of Cl(-) through the artificial Cl(-) channel can be regulated by modulating basolateral K(+) efflux through Ca(2+)-dependent K(+) channels. Application of C-K4-M2GlyR to the apical surface of monolayers composed of human colonic cells of the T84 cell line generated a sustained increase in short-circuit current (I(SC)) and caused net fluid secretion. The current was inhibited by the application of clotrimazole, a non-specific inhibitor of K(+) channels, and charybdotoxin, a potent inhibitor of Ca(2+)-dependent K(+) channels. Direct activation of these channels with 1-ethyl-2-benzimidazolinone (1-EBIO) greatly amplified the Cl(-) secretory current induced by C-K4-M2GlyR. The effect of the combination of C-K4-M2GlyR and 1-EBIO on I(SC) was significantly greater than the sum of the individual effects of the two compounds and was independent of cAMP. Treatment with 1-EBIO also increased the magnitude of fluid secretion induced by the peptide. The cooperative action of C-K4-M2GlyR and 1-EBIO on I(SC) was attenuated by Cl(-) transport inhibitors, by removing Cl(-) from the bathing solution and by basolateral treatment with K(+) channel blockers. These results indicate that apical membrane insertion of Cl(-) channel-forming peptides such as C-K4-M2GlyR and direct activation of basolateral K(+) channels with benzimidazolones may coordinate the apical Cl(-) conductance and the basolateral K(+) conductance, thereby providing a pharmacological approach to modulating Cl(-) and fluid secretion by human epithelia deficient in cystic fibrosis transmembrane conductance regulator Cl(-) channels.  相似文献   

10.
The dystrophin-associated protein complex (DAPC) consists of several transmembrane and intracellular scaffolding elements that have been implicated in maintaining the structure and morphology of the vertebrate neuromuscular junction (NMJ). Genetic linkage analysis has identified loss-of-function mutations in DAPC genes that give rise to degenerative muscular dystrophies. Although much is known about the involvement of the DAPC in maintaining muscle integrity, less is known about the precise contribution of the DAPC in cell signaling events. To better characterize the functional role of the DAPC at the NMJ, we used electrophysiology, immunohistochemistry, and fluorescent labeling to directly assess cholinergic synaptic transmission, ion channel localization, and muscle excitability in loss-of-function (lf) mutants of Caenorhabditis elegans DAPC homologues. We found that all DAPC mutants consistently display mislocalization of the Ca(2+)-gated K(+) channel, SLO-1, in muscle cells, while ionotropic acetylcholine receptor (AChR) expression and localization at the NMJ remained unaltered. Synaptic cholinergic signaling was also not significantly impacted across DAPC(lf) mutants. Consistent with these findings and the postsynaptic mislocalization of SLO-1, we observed an increase in muscle excitability downstream of cholinergic signaling. Based on our results, we conclude that the DAPC is not involved in regulating AChR architecture at the NMJ, but rather functions to control muscle excitability, in an activity-dependent manner, through the proper localization of SLO-1 channels.  相似文献   

11.
12.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

13.
The (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2(+)-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5 mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2(+)-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2(+)- and Mg2(+)-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

14.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle.

  相似文献   

15.
We have applied the perforated patch whole-cell technique to beta cells within intact pancreatic islets to identify the current underlying the glucose-induced rhythmic firing of action potentials. Trains of depolarizations (to simulate glucose-induced electrical activity) resulted in the gradual (time constant: 2.3 s) development of a small (<0.8 nS) K(+) conductance. The current was dependent on Ca(2+) influx but unaffected by apamin and charybdotoxin, two blockers of Ca(2+)-activated K(+) channels, and was insensitive to tolbutamide (a blocker of ATP-regulated K(+) channels) but partially (>60%) blocked by high (10-20 mM) concentrations of tetraethylammonium. Upon cessation of electrical stimulation, the current deactivated exponentially with a time constant of 6.5 s. This is similar to the interval between two successive bursts of action potentials. We propose that this Ca(2+)-activated K(+) current plays an important role in the generation of oscillatory electrical activity in the beta cell.  相似文献   

16.
Using the patch-clamp technique, we demonstrate that, in depolarized cell-attached patches from mouse skeletal muscle fibers, a short hyperpolarization to resting value is followed by a transient activation of Ca(2+)-activated K(+) channels (K(Ca)) upon return to depolarized levels. These results indicate that sparse sites of passive Ca(2+) influx at resting potentials are responsible for a subsarcolemmal Ca(2+) load high enough to induce K(Ca) channel activation upon muscle activation. We then investigate this phenomenon in mdx dystrophin-deficient muscle fibers, in which an elevated Ca(2+) influx and a subsequent subsarcolemmal Ca(2+) overload are suspected. The number of Ca(2+) entry sites detected with K(Ca) was found to be greater in mdx muscle. K(Ca) activity reflecting subsarcolemmal Ca(2+) load was also found to be independent of the activity of leak channels carrying inward currents at negative potentials in mdx muscle. These results indicate that the sites of passive Ca(2+) influx newly described in this study could represent the Ca(2+) influx pathways responsible for the subsarcolemmal Ca(2+) overload in mdx muscle fibers.  相似文献   

17.
Ca(2+)-dependent proteolysis in muscle wasting   总被引:6,自引:0,他引:6  
Skeletal muscle wasting is a prominent feature of cachexia, a complex systemic syndrome that frequently complicates chronic diseases such as inflammatory and autoimmune disorders, cancer and AIDS. Muscle wasting may also develop as a manifestation of primary or neurogenic muscular disorders. It is now generally accepted that muscle depletion mainly arises from increased protein catabolism. The ubiquitin-proteasome system is believed to be the major proteolytic machinery in charge of such protein breakdown, yet there is evidence suggesting that Ca(2+)-dependent system, lysosomes and, in some conditions at least, even caspases are involved as well. The role of Ca(2+)-dependent proteolysis in skeletal muscle wasting is reviewed in the present paper. This system relies on the activity of calpains, a family of Ca(2+)-dependent cysteine proteases, whose regulation is complex and not completely elucidated. Modulations of Ca(2+)-dependent proteolysis have been associated with muscle protein depletion in various pathological contexts and particularly with muscle dystrophies. Calpains can only perform a limited proteolysis of their substrates, however they may play a critical role in initiating the breakdown of myofibrillar protein, by releasing molecules that become suitable for further degradation by proteasomes. Some evidence would also support a role for lysosomes and caspases in muscle wasting. Thus it cannot be excluded that different intracellular proteolytic systems may coordinately concur in shifting muscle protein turnover towards excess catabolism. Many different signals have been proposed as potentially involved in triggering the enhanced protein breakdown that underlies muscle wasting. How they are transduced to initiate the hypercatabolic response and to activate the proteolytic pathways remains largely unknown, however.  相似文献   

18.
We characterized changes in membrane currents and the cytosolic Ca(2+) concentration, [Ca(2+)](i), in response to caffeine, and compared them with those in response to muscarine using the perforated patch-clamp technique and fura-2 microfluorimetry in guinea-pig adrenal chromaffin cells. Catecholamine release from single voltage-clamped cells was monitored with amperometry using carbon microelectrodes. Caffeine produced a transient outward current (I(out)) at holding potentials over - 60 mV, increasing in amplitude with increasing the potentials. It also evoked a rapid increase of [Ca(2+)](i) at all potentials examined. The current-voltage relation revealed that the activation of K(+) channels was responsible for the I(out) evoked by caffeine. Both current and [Ca(2+)](i) responses were reversibly abolished by cyclopiazonic acid, an inhibitor of Ca(2+)-pump ATPase. At - 30 mV, the caffeine-induced I(out), but not [Ca(2+)](i), was partly inhibited by either charybdotoxin or apamin. In the majority of cells tested, caffeine induced a larger I(out) but a smaller [Ca(2+)](i) increase than muscarine. Caffeine and muscarine increased catecholamine release from voltage-clamped single cells concomitant with the transient increase of [Ca(2+)](i), and there was a positive correlation between them. These results indicate that caffeine activates Ca(2+)-dependent K(+) channels and catecholamine secretion due to the release of Ca(2+) from internal stores in voltage-clamped adrenal chromaffin cells of the guinea-pig. There seems to be a spatial difference between [Ca(2+)](i) increased by Ca(2+) release from caffeine-sensitive stores and that released from muscarine (inositol 1,4,5-trisphosphate)-sensitive ones.  相似文献   

19.
Ca(2+)-dependent annexin self-association on membrane surfaces   总被引:3,自引:0,他引:3  
W J Zaks  C E Creutz 《Biochemistry》1991,30(40):9607-9615
Annexin self-association was studied with 90 degrees light scattering and resonance energy transfer between fluorescein (donor) and eosin (acceptor) labeled proteins. Synexin (annexin VII), p32 (annexin IV), and p67 (annexin VI) self-associated in a Ca(2+)-dependent manner in solution. However, this activity was quite labile and, especially for p32 and p67, was not consistently observed. When bound to chromaffin granule membranes, the three proteins consistently self-associated and did so at Ca2+ levels (pCa 5.0-4.5) approximately 10-fold lower than required when in solution. Phospholipid vesicles containing phosphatidylserine and phosphatidylethanolamine (1:1 or 1:3) were less effective at supporting annexin polymerization than were those containing phosphatidylserine and phosphatidylcholine (1:0, 1:1, or 1:3). The annexins bound chromaffin granule membranes in a positively cooperative manner under conditions where annexin self-association was observed, and both phenomena were inhibited by trifluoperazine. Ca(2+)-dependent chromaffin granule membrane aggregation, induced by p32 or synexin, was associated with intermembrane annexin polymerization at Ca2+ levels less than pCa 4, but not at higher Ca2+ concentrations, suggesting that annexin self-association may be necessary for membrane contact at low Ca2+ levels but not at higher Ca2+ levels where the protein may bind two membranes as a monomer.  相似文献   

20.
Hyperpolarizing large-conductance, Ca(2+)-activated K(+) channels (BK) are important modulators of vascular smooth muscle and endothelial cell function. In vascular smooth muscle cells, BK are composed of pore-forming alpha subunits and modulatory beta subunits. However, expression, composition, and function of BK subunits in endothelium have not been studied so far. In patch-clamp experiments we identified BK (283 pS) in intact endothelium of porcine aortic tissue slices. The BK opener DHS-I (0.05-0.3 micromol/l), stimulating BK activity only in the presence of beta subunits, had no effect on BK in endothelium whereas the alpha subunit selective BK opener NS1619 (20 micromol/l) markedly increased channel activity. Correspondingly, mRNA expression of the beta subunit was undetectable in endothelium, whereas alpha subunit expression was demonstrated. To investigate the functional role of beta subunits, we transfected the beta subunit into a human endothelial cell line (EA.hy 926). beta subunit expression resulted in an increased Ca(2+) sensitivity of BK activity: the potential of half-maximal activation (V(1/2)) shifted from 73.4 mV to 49.6 mV at 1 micromol/l [Ca(2+)](i) and an decrease of the EC(50) value for [Ca(2+)](i) by 1 microM at +60 mV was observed. This study demonstrates that BK channels in endothelium are composed of alpha subunits without association to beta subunits. The lack of the beta subunit indicates a substantially different channel regulation in endothelial cells compared to vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号