首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with β-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of β-arrestin1 and PP2A with noninternalized NK(1)R. β-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that β-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping β-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires β-arrestin1. ECE-1 promotes this process by releasing β-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.  相似文献   

2.
Protein kinase C-mediated desensitization of the neurokinin 1 receptor   总被引:1,自引:0,他引:1  
An understanding of the mechanisms that regulate signaling bythe substance P (SP) or neurokinin 1 receptor (NK1-R) is of interestbecause of their role in inflammation and pain. By using activators andinhibitors of protein kinase C (PKC) and NK1-R mutations of potentialPKC phosphorylation sites, we determined the role of PKC indesensitization of responses to SP. Activation of PKC abolishedSP-induced Ca2+ mobilization in cells that expresswild-type NK1-R. This did not occur in cells expressing aCOOH-terminally truncated NK1-R (NK1-R324), which may correspond toa naturally occurring variant, or a point mutant lacking eightpotential PKC phosphorylation sites within the COOH tail (NK1-RSer-338, Thr-339, Ser-352, Ser-387, Ser-388, Ser-390, Ser-392,Ser-394/Ala, NK1-RKC4). Compared with wild-type NK1-R, thet1/2 of SP-induced Ca2+mobilization was seven- and twofold greater in cells expressing NK1-R324 and NK1-RKC4, respectively. In cells expressing wild-type NK1-R, inhibition of PKC caused a 35% increase in thet1/2 of SP-induced Ca2+mobilization. Neither inhibition of PKC nor receptor mutation affecteddesensitization of Ca2+ mobilization to repeated challengewith SP or SP-induced endocytosis of the NK1-R. Thus PKC regulatesSP-induced Ca2+ mobilization by full-length NK1-R and doesnot regulate a naturally occurring truncated variant. PKC doesnot mediate desensitization to repeated stimulation or endocytosis ofthe NK1-R.

  相似文献   

3.
Agonist-induced redistribution of G-protein-coupled receptors (GPCRs) and beta-arrestins determines the subsequent cellular responsiveness to agonists and is important for signal transduction. We examined substance P (SP)-induced trafficking of beta-arrestin1 and the neurokinin-1 receptor (NK1R) in KNRK cells in real time using green fluorescent protein. Green fluorescent protein did not alter function or localization of the NK1R or beta-arrestin1. SP induced (a) striking and rapid (<1 min) translocation of beta-arrestin1 from the cytosol to the plasma membrane, which preceded NK1R endocytosis; (b) redistribution of the NK1R and beta-arrestin1 into the same endosomes containing SP and the transferrin receptor (2-10 min); (c) prolonged colocalization of the NK1R and beta-arrestin1 in endosomes (>60 min); (d) gradual resumption of the steady state distribution of the NK1R at the plasma membrane and beta-arrestin1 in the cytosol (4-6 h). SP stimulated a similar redistribution of immunoreactive beta-arrestin1 and beta-arrestin2. In contrast, SP did not affect Galphaq/11 distribution, which remained at the plasma membrane. Expression of the dominant negative beta-arrestin319-418 inhibited SP-induced endocytosis of the NK1R. Thus, SP induces rapid translocation of beta-arrestins to the plasma membrane, where they participate in NK1R endocytosis. beta-Arrestins colocalize with the NK1R in endosomes until the NK1R recycles and beta-arrestins return to the cytosol.  相似文献   

4.
The effect of the potent inflammatory mediator, platelet activating factor (PAF) was studied on the vascular permeability of selected rat tissues using the extravasation of Evans blue dye (EB) as a marker. EB (20 mg/kg) was injected in the caudal vein together with increasing doses of PAF (0.1, 1.0 and 5.0 micrograms/kg). The animals were killed and the dye was extracted in selected organs using formamide (4 ml/g wet weight tissues) and the content was expressed as EB micrograms/g dry weight. Extravasation of EB varied markedly from one tissue to another and increased as a function of time (from 0 to 60 min). PAF (5.0 micrograms/kg) increased the pancreas and duodenum vascular permeability by 15 and 5 fold respectively. At the doses of 0.1 and 1.0 microgram/kg, PAF induced a slight increase (P less than 0.01) of the vascular permeability of the heart 5 min after the injection. The PAF antagonist BN-52021 (2 and 10 mg/kg) produced a dose-dependent inhibition of the PAF effects on the pancreas, heart and duodenum. Maximum inhibition (approximately 100%) was achieved at the dose of 10 mg/kg. This antagonist given in the absence or the presence of PAF reduced the lung plasma extravasation below control levels. A thromboxane antagonist, L-655,240 (1.0 and 5.0 mg/kg) also inhibited PAF-induced increases in vascular permeability in heart, duodenum and pancreas. It also reduced below control levels the EB extravasation in kidneys, spleen and lungs. Maximum inhibition (50% for the duodenum, and 40% for the pancreas) was achieved at the dose of 5.0 mg/kg.  相似文献   

5.
The neuropeptide Substance P (SP), that has a high affinity for the neurokinin 1 (NK1) receptor, is involved in modulation of pain transmission. Although SP is thought to have excitatory actions and promote nociception in the spinal cord, the peptide induces analgesia at the supraspinal level. The aim of this study was to evaluate the role of supraspinal SP and the NK1 receptor in inflammatory pain induced by injection of carrageenan in the hind paw of the rat. There are two nociceptive behavioral responses associated with this pain state: mechanical allodynia and heat hyperalgesia. Because the NK1 receptor colocalizes with the MOP receptor in supraspinal sites involved in pain modulation, we also decided to study the possible involvement of the opioid system on SP-induced analgesia. We found that treatment with SP, at doses of 3.5, 5 and 7 μg/5 μl/rat i.c.v., clearly showed inhibition of allodynia and hyperalgesia. Pretreatment with the selective NK1 antagonist L-733,060 (10mg/kg i.p.) blocked the SP-induced analgesia, suggesting the involvement of the NK1 receptor. This SP-induced analgesia was significantly reduced by administration of the opioid antagonist naloxone (3mg/kg s.c.). This reduction occurred when SP was administered either before or after the carrageenan injection. These results suggest a significant antinociceptive role for SP and the NK1 receptor in inflammatory pain at the supraspinal level, possibly through the release of endogenous opioids.  相似文献   

6.
The distributions of substance P (SP) and the neurokinin-1 receptor (NK1-R), the receptor preferentially activated by SP, were examined in rat gingiva by immunocytochemical methods with light and electron microscopy. SP-immunoreactive nerve fibers were located preferentially in the junctional epithelium (JE) but few in the other oral and oral sulcular epithelia. NK1-R immunoreactivity was found in the endothelial cells (capillaries and postcapillary venules underlying the JE). NK1-R-labeled and -unlabeled unmyelinated nerve fibers were located close to the blood vessels and partially or completely covered by a Schwann cell sheath. In the JE, labeled naked axons without Schwann cell sheaths were observed. Neutrophils and macrophages in the connective tissue underlying the JE and in the JE were also labeled with NK1-R. Furthermore, NK1-R was found in the JE cells. Basically, immunoreaction products for NK1-R were found throughout various cells (endothelial cells, neutrophils, and JE cells) at invaginations of the plasma membrane and in vesicular and granular structures that are probably endosomes and are found close to both the plasma membrane and the nucleus. This is a first report, demonstrating the presence of NK1-R in the gingival tissue in the normal nonstimulated condition. Furthermore, it is thought that SP may modulate the permeability of blood vessels beneath the JE, the production of antimicrobial agents in neutrophils, and the proliferation and endocytotic ability of JE cells through NK1-R.  相似文献   

7.
Substance P (SP) is well known to promote inflammation in acute pancreatitis (AP) by interacting with neurokinin-1 receptor. However, mechanisms that terminate SP-mediated responses are unclear. Neutral endopeptidase (NEP) is a cell-surface enzyme that degrades SP in the extracellular fluid. In this study, we examined the expression and the role of NEP in caerulein-induced AP. Male BALB/c mice (20-25 g) subjected to 3-10 hourly injections of caerulein (50 μg/kg) exhibited reduced NEP activity and protein expression in the pancreas and lungs. Additionally, caerulein (10(-7) M) also downregulated NEP activity and mRNA expression in isolated pancreatic acinar cells. The role of NEP in AP was examined in two opposite ways: inhibition of NEP (phosphoramidon [5 mg/kg] or thiorphan [10 mg/kg]) followed by 6 hourly caerulein injections) or supplementation with exogenous NEP (10 hourly caerulein injections, treatment of recombinant mouse NEP [1 mg/kg] during second caerulein injection). Inhibition of NEP raised SP levels and exacerbated inflammatory conditions in mice. Meanwhile, the severity of AP, determined by histological examination, tissue water content, myeloperoxidase activity, and plasma amylase activity, was markedly better in mice that received exogenous NEP treatment. Our results suggest that NEP is anti-inflammatory in caerulein-induced AP. Acute inhibition of NEP contributes to increased SP levels in caerulein-induced AP, which leads to augmented inflammatory responses in the pancreas and associated lung injury.  相似文献   

8.
Immunoreactivity for NK1 receptors is confined to specific nerve cell bodies in the guinea-pig ileum, including inhibitory motor neurons and secretomotor neurons. In the present work, endocytosis of NK1 receptors in these enteric neurons was studied following addition of substance P (SP) to isolated ileum. NK1 receptors were localised with antibodies against the C-terminus of this receptor. Some preparations were incubated with SP tagged with the fluorescent label, Cy3.18, so that the fate of SP bound to receptors could be followed. Preparations were analysed by confocal microcopy. In tissue that was incubated at 4° C in the absence of SP, most NK1 receptor immunoreactivity (IR) was confined to surface membranes of nerve cells. At 37° C in the presence of 10−7 M SP (plus 3×10−7M tetrodotoxin to prevent indirect activation via other neurons) the neuronal NK1 receptor was rapidly internalised. After 5 min, NK1 receptor IR was partially internalised, at 20 min NK1 receptor IR was throughout the cytoplasm and in perinuclear aggregates and at 30 min it was again at the cell surface. SP-induced NK1 receptor endocytosis was inhibited by the specific NK1 receptor antagonist, SR140333. Cy3-SP was colocalised with NK1 receptor IR and was internalised with the NK1 receptor. These results show that enteric neurons exhibit authentic NK1 receptors that are rapidly internalised when exposed to their preferred ligand.  相似文献   

9.
Convection-enhanced delivery of substance P (SP) nocitoxins to the spinal cord interstitium is under consideration for the treatment of chronic pain. To characterize treatment protocols, a three-dimensional finite-element model of infusion into the human dorsal column was developed to predict the distribution of SP-diphtheria toxin fusion protein (SP-DT') within normal and target tissue. The model incorporated anisotropic convective and diffusive transport through the interstitial space, hydrolysis by peptidases, and intracellular trafficking. For constant SP-DT' infusion (0.1 microl/min), the distribution of cytotoxicity in NK1 receptor-expressing neurons was predicted to reach an asymptotic limit at 6-8 h in the transverse direction at the level of the infusion cannula tip ( approximately 60% ablation of target neurons in lamina I/II). Computations revealed that SP-DT' treatment was favored by a stable SP analog (half-life approximately 60 min), high infusate concentration (385 nM), and careful catheter placement (adjacent to target lamina I/II). Sensitivity of cytotoxic regions to NK1 receptor density and white matter protease activity was also established. These data suggest that intraparenchymal infusions can be useful for treatment of localized chronic pain.  相似文献   

10.
Acute pancreatitis (AP) has been associated with an up-regulation of substance P (SP) and neurokinin-1 receptor (NK1R) in the pancreas. Increased SP-NK1R interaction was suggested to be pro-inflammatory during AP. Previously, we showed that caerulein treatment increased SP/NK1R expression in mouse pancreatic acinar cells, but the effect of SP treatment was not evaluated. Pancreatic acinar cells were obtained from pancreas of male swiss mice (25–30 g). We measured mRNA expression of preprotachykinin-A (PPTA) and NK1R following treatment of SP (10−6M). SP treatment increased PPTA and NK1R expression in isolated pancreatic acinar cells, which was abolished by pretreatment of a selective NK1R antagonist, CP96,345. SP also time dependently increased protein expression of NK1R. Treatment of cells with a specific NK1R agonist, GR73,632, up-regulated SP protein levels in the cells. Using previously established concentrations, pre-treatment of pancreatic acinar cells with Gö6976 (10 nM), rottlerin (5 μM), PD98059 (30 μM), SP600125 (30 μM) or Bay11-7082 (30 μM) significantly inhibited up-regulation of SP and NK1R. These observations suggested that the PKC-ERK/JNK-NF-κB pathway is necessary for the modulation of expression levels. In comparison, pre-treatment of CP96,345 reversed gene expression in SP-induced cells, but not in caerulein-treated cells. Overall, the findings in this study suggested a possible auto-regulatory mechanism of SP/NK1R expression in mouse pancreatic acinar cells, via activation of NK1R. Elevated SP levels during AP might increase the occurrence of a positive feedback loop that contributes to abnormally high expression of SP and NK1R.  相似文献   

11.
Several mediators appear to interact in neurogenic inflammation   总被引:1,自引:0,他引:1  
Plasma protein extravasation was studied in the rat abdominal skin. Substance P (SP), neurokinin A (NKA) and B (NKB) were found to induce extravasation with a threshold dose of about 1 pmol. Calcitonin gene-related peptide (CGRP) caused no or little extravasation alone but it potentiated the action of SP, NKA, NKB, and physalaemin. The potentiation of the SP-induced extravasation was unaffected by pretreatment with capsaicin, indomethacin or compound 48/80, it was reduced by neuropeptide Y or pretreatment with mepyramine plus cimetidine, and was abolished in streptozotocin diabetic rats. CGRP augmented extravasation induced by histamine, reduced the effect of ATP or adenosine and did not alter extravasation by serotonin, bradykinin or neurotensin. These results indicate that in addition to SP the novel mammalian tachykinins NKA and NKB may be considered as mediator candidates for neurogenic plasma extravasation. CGRP is a possible mediator of antidromic vasodilation. Furthermore, CGRP potentiates the extravasation caused by coexisting tachykinins and could thereby augment neurogenic inflammation. The diverse interactions of CGRP with other inflammatory mediators suggest multiple sites of action.  相似文献   

12.
Many of the actions of the neuropeptide substance P (SP) that are mediated by the neurokinin 1 receptor (NK1-R) desensitize and resensitize, which may be associated with NK1-R endocytosis and recycling. We delineated this endocytic pathway in transfected cells by confocal microscopy using cyanine 3-SP and NK1-R antibodies. SP and the NK1-R were internalized into the same clathrin immunoreactive vesicles, and then sorted into different compartments. The NK1-R was colocalized with a marker of early endosomes, but not with markers of late endosomes or lysosomes. We quantified the NK1-R at the cell surface by incubating cells with an antibody to an extracellular epitope. After exposure to SP, there was a loss and subsequent recovery of surface NK1-R. The loss was prevented by hypertonic sucrose and potassium depletion, inhibitors of clathrin-mediated endocytosis. Recovery was independent of new protein synthesis because it was unaffected by cycloheximide. Recovery required endosomal acidification because it was prevented by an H(+)-ATPase inhibitor. The fate of internalized 125I-SP was examined by chromatography. SP was intact at the cell surface and in early endosomes, but slowly degraded in perinuclear vesicles. We conclude that SP induces clathrin-dependent internalization of the NK1-R. The SP/NK1-R complex dissociates in acidified endosomes. SP is degraded, whereas the NK1-R recycles to the cell surface.  相似文献   

13.
Substance P (SP) induces endocytosis and recycling of the neurokinin 1 receptor (NK1R) in endothelial cells and spinal neurons at sites of inflammation and pain, and it is thus important to understand the mechanism and function of receptor trafficking. We investigated how the SP concentration affects NK1R trafficking and determined the role of Rab GTPases in trafficking. NK1R trafficking was markedly influenced by the SP concentration. High SP (10 nM) induced translocation of the NK1R and beta-arrestin 1 to perinuclear sorting endosomes containing Rab5a, where NK1R remained for >60 min. Low SP (1 nM) induced translocation of the NK1R to early endosomes located immediately beneath the plasma membrane that also contained Rab5a and beta-arrestin 1, followed by rapid recycling of the NK1R. Overexpression of Rab5a promoted NK1R translocation to perinuclear sorting endosomes, whereas the GTP binding-deficient mutant Rab5aS34N caused retention of the NK1R in superficial early endosomes. NK1R translocated from superficial early endosomes to recycling endosomes containing Rab4a and Rab11a, and Rab11aS25N inhibited NK1R recycling. Rapid NK1R recycling coincided with resensitization of SP-induced Ca2+ mobilization and with the return of surface SP binding sites. Resensitization was minimally affected by inhibition of vacuolar H(+)-ATPase and phosphatases but was markedly suppressed by disruption of Rab4a and Rab11a. Thus, whereas beta-arrestins mediate NK1R endocytosis, Rab5a regulates translocation between early and sorting endosomes, and Rab4a and Rab11a regulate trafficking through recycling endosomes. We have thus identified a new function of Rab5a as a control protein for directing concentration-dependent trafficking of the NK1R into different intracellular compartments and obtained evidence that Rab4a and Rab11a contribute to G-protein-coupled receptor recycling from early endosomes.  相似文献   

14.
Understanding the molecular mechanisms of agonist-induced trafficking of G-protein-coupled receptors is important because of the essential role of trafficking in signal transduction. We examined the role of the GTPases dynamin 1 and Rab5a in substance P (SP)-induced trafficking and signaling of the neurokinin 1 receptor (NK1R), an important mediator of pain, depression, and inflammation, by studying transfected cells and enteric neurons that naturally express the NK1R. In unstimulated cells, the NK1R colocalized with dynamin at the plasma membrane, and Rab5a was detected in endosomes. SP induced translocation of the receptor into endosomes containing Rab5a immediately beneath the plasma membrane and then in a perinuclear location. Expression of the dominant negative mutants dynamin 1 K44E and Rab5aS34N inhibited endocytosis of SP by 45 and 32%, respectively. Dynamin K44E caused membrane retention of the NK1R, whereas Rab5aS34N also impeded the translocation of the receptor from superficially located to perinuclear endosomes. Both dynamin K44E and Rab5aS34N strongly inhibited resensitization of SP-induced Ca(2+) mobilization by 60 and 85%, respectively, but had no effect on NK1R desensitization. Dynamin K44E but not Rab5aS34N markedly reduced SP-induced phosphorylation of extracellular signal regulated kinases 1 and 2. Thus, dynamin mediates the formation of endosomes containing the NK1R, and Rab5a mediates both endosomal formation and their translocation from a superficial to a perinuclear location. Dynamin and Rab5a-dependent trafficking is essential for NK1R resensitization but is not necessary for desensitization of signaling. Dynamin-dependent but not Rab5a-dependent trafficking is required for coupling of the NK1R to the mitogen-activated protein kinase cascade. These processes may regulate the nociceptive, depressive, and proinflammatory effects of SP.  相似文献   

15.
The neuropeptide substance P (SP) has been hypothesized to be involved in the etiopathology of affective disorders. This hypothesis is based on the findings that neurokinin-1-receptor antagonists have antidepressant effects in depressed patients and that SP may worsen mood. In this study, we investigated the effect of the mood-stabilizing agents valproic acid (VPA), carbamazepine, and lithium on SP-induced gene expression. As a model system, we used primary rat astrocytes and human astrocytoma cells, which both express functional SP-receptors and, upon stimulation with SP, synthesize interleukin-6 (IL-6), a cytokine which has been shown to be elevated during the acute depressive state. We found that VPA dose-dependently inhibited SP-induced IL-6 synthesis which was seen with pre-incubation periods of 30 min, 3, 7 and 14 days, whereas carbamazepine and lithium showed no inhibitory effect. The inhibitory effect of VPA was not mediated by inhibition of the stress-regulated kinases p38 and p42/44 (Erk1/2) but by inhibition of protein kinase C epsilon activation. Furthermore, VPA down-regulated the expression of the substance P receptor (neurokinin(NK)-1-receptor) as assessed by real-time PCR. Whether both mechanisms contribute to the mood-stabilizing properties of VPA has to be evaluated in further studies.  相似文献   

16.
The stimulation of rat parotid acinar cells by substance P(SP) resulted in a significant reduction in the initial accumulation of cytosolic myo[3H]inositol and in the initial labelling of phosphoinositides. The SP-induced reduction was concentration-dependent, the EC50 of SP was 5.8 +/- 2.5 nM. Spantide, [D-Arg1, D-Trp7,9, Leu11]SP, a SP antagonist, used at a concentration of 10(-5) M, competitively shifted the dose-response curve of SP. The pharmacological analysis of the effects of several tachykinins and analogues, suggests the implication of NK1 receptors (specific receptor of SP).  相似文献   

17.
Substance P (SP) is a neuropeptide that is released from axons of sensory neurons and causes signal transduction through the activation of the neurokinin-1 receptor (NK1-R). The present study demonstrates the distribution of SP-like-immunoreactive (SP-LI) axons and the localization of NK1-Rs in rat bone tissue using the avidin-biotin-peroxidase complex method. Axons with SP-LI were commonly found near the trabecular bone in the temporal bone marrow, but they were only sparsely distributed in the mandible, femur, and tibia. Immunoreactivity for NK1-Rs was found on the plasma membrane and in the cytoplasm of the osteoclasts. In the osteoblasts and osteocytes, a small number of weak, punctate immunoreactive products of NK1-Rs were distributed close to the plasma membrane. At the electron-microscopic level, immunoreactivity for NK1-R was distributed mainly in the whole cytoplasm, except for the clear zone of the osteoclasts, and in pit-like structures along the plasma membrane. The NK1-R-immunoreactive structures in the cytoplasm were divided into two types of organelles, consisting of vesicular and vacuolar structures (probably transport vesicles and early endosomes). In the osteoblasts and osteocytes, the number of NK1-R-positive vesicular structures was fewer than in the osteoclasts. These results thus suggest that SP secreted by the sensory axons could directly modulate bone metabolism via NK1-Rs.  相似文献   

18.
Observations in reconstituted systems and transfected cells indicate that G-protein receptor kinases (GRKs) and β-arrestins mediate desensitization and endocytosis of G-protein–coupled receptors. Little is known about receptor regulation in neurons. Therefore, we examined the effects of the neurotransmitter substance P (SP) on desensitization of the neurokinin-1 receptor (NK1-R) and on the subcellular distribution of NK1-R, Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in cultured myenteric neurons. NK1-R was coexpressed with immunoreactive Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in a subpopulation of neurons. SP caused 1) rapid NK1-R–mediated increase in [Ca2+]i, which was transient and desensitized to repeated stimulation; 2) internalization of the NK1-R into early endosomes containing SP; and 3) rapid and transient redistribution of β-arrestin-1 and -2 from the cytosol to the plasma membrane, followed by a striking redistribution of β-arrestin-1 and -2 to endosomes containing the NK1-R and SP. In SP-treated neurons Gαq/11 remained at the plasma membrane, and GRK-2 and -3 remained in centrally located and superficial vesicles. Thus, SP induces desensitization and endocytosis of the NK1-R in neurons that may be mediated by GRK-2 and -3 and β-arrestin-1 and -2. This regulation will determine whether NK1-R–expressing neurons participate in functionally important reflexes.  相似文献   

19.
To characterize the tachykininergic effects in fire smoke (FS)-induced acute respiratory distress syndrome (ARDS), we designed a series of studies in rats. Initially, 20 min of FS inhalation induced a significant increase of substance P (SP) in bronchoalveolar lavage fluid (BALF) at 1 h and persisted for 24 h after insult. Conversely, FS disrupted 51.4, 55.6, 46.3, and 43.0% enzymatic activity of neutral endopeptidase (NEP, a primary hydrolyzing enzyme for SP) 1, 6, 12, and 24 h after insult, respectively. Immunolabeling density of NEP in the airway epithelium largely disappeared 1 h after insult due to acute cell damage and shedding. These changes were also accompanied by extensive influx of albumin and granulocytes/lymphocytes in BALF. Furthermore, levels of BALF SP and tissue NEP activity dose dependently increased and decreased, respectively, following 0, low (10 min), and high (20 min) levels of FS inhalation. However, neither the time-course nor the dose-response study observed a significant change in the highest affinity neurokinin-1 receptor (NK-1R) for SP. Finally, treatment (10 mg/kg im) with SR-140333B, an NK-1R antagonist, significantly prevented 20-min FS-induced hypoxemia and pulmonary edema 24 h after insult. Further examination indicated that SR-140333B (1.0 or 10.0 mg/kg im) fully abolished early (1 h) plasma extravasation following FS. Collectively, these findings suggest that a combination of sustained SP and NEP inactivity induces an exaggerated neurogenic inflammation mediated by NK-1R, which may lead to an uncontrolled influx of protein-rich edema fluid and cells into the alveoli as a consequence of increased vascular permeability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号