首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Many prey organisms will approach (inspect) potential predators, primarily to assess local risk of predation. It has been demonstrated that Ostariphysan prey fishes can detect conspecific alarm pheromones in the diet of potential predators and use this chemical information to reduce their risk of predation while still gaining significant benefits associated with predator inspection. We conducted the current study to examine the possible effects of mixed diets on the use of these chemical predator diet cues during inspection visits. Shoals of four glowlight tetras ( Hemigrammus erythrozonus ) were exposed to Jack Dempsey cichlids ( Cichlasoma octofaciatum ) which had been fed diets consisting of: 100% tetras (with alarm pheromone); 75% tetra, 25% swordtail ( Xiphophorus helleri , which lack a recognizable alarm pheromone); 25% tetra, 75% swordtail; or 100% swordtails. Tetras significantly increased their anti-predator behaviour in response to predators fed 100% tetra or the two mixed predator diets, but not when exposed to predators fed a 100% swordtail diet. Likewise, we observed significant differences in inspection behaviour. Tetras took longer to initiate an inspection, inspected in smaller groups and directed a greater proportion of inspection visits towards the tail region of the predator when it had been fed 100% tetra or either of the two mixed prey diets. We found no significant differences in either anti-predator or inspection behaviour among the three diet treatments containing tetras. These data strongly suggest that glowlight tetras are capable of detecting relatively small amounts of conspecific alarm pheromone in the diet of potential predators and that they modify their behaviour based on the presence or absence of these cues.  相似文献   

2.
Recent evidence suggests that predator inspection behaviour by Ostariophysan prey fishes is regulated by both the chemical and visual cues of potential predators. In laboratory trials, we assessed the relative importance of chemical and visual information during inspection visits by varying both ambient light (visual cues) and predator odour (chemical cues) in a 2 × 2 experimental design. Shoals of glowlight tetras (Hemigrammus erythrozonus) were exposed to a live convict cichlid (Archocentrus nigrofasciatus) predator under low (3 lux) or high (50 lux) light levels and in the presence of the odour of a cichild fed tetras (with an alarm cue) or swordtails (Xiphophorus helleri, with an alarm cue not recognized by tetras). Tetras exhibited threat‐sensitive inspection behaviour (increased latency to inspect, reduced frequency of inspection, smaller inspecting group sizes and increased minimum approach distance) towards a predator paired with a tetra‐fed diet cue, regardless of light levels. Similar threat‐sensitive inspection patterns were observed towards cichlids paired with a swordtail‐fed diet cue only under high light conditions. Our data suggest that chemical cues in the form of prey alarm cues in the diet of the predator, are the primary source of information regarding local predation risk during inspection behaviour, and that visual cues are used when chemical information is unavailable or ambiguous.  相似文献   

3.
Individuals that dare approach predators (predator inspection behaviour) may benefit by acquiring information regarding the potential threat of predation. Although information acquisition based on visual cues has been demonstrated for fish, it is unknown whether fish will inspect predators on the basis of chemical cues or whether such inspection behaviour results in information acquisition. Here, we first ascertained whether predator inspection behaviour can be mediated by chemical cues from predators by exposing groups of predator-naive glowlight tetras (Hemigrammus erythrozonus) to the chemical cues of a potential fish predator (convict cichlid Cichlasoma nigrofasciatum) that had been fed either tetras (which possess an alarm pheromone) or swordtails (Xiphophorus helleri, which lack Ostariophysan alarm pheromones). Tetras showed a significant increase in antipredator behaviour when exposed to the tetra-diet cue, but not when exposed to the swordtail-diet cue. Chemically mediated predator inspection behaviour was also affected. Both the latency to inspect and the minimum approach distance to the predator significantly increased, and the mean number of inspectors per predator inspection visit significantly decreased when tetras were exposed to the tetra-diet versus the swordtail-diet chemical cues. We then examined a potential benefit associated with chemically mediated predator inspection behaviour. Only tetras that were initially exposed to the tetra-diet cue and that had inspected the predator acquired the visual recognition of a convict cichlid as a predation threat. Our results thus demonstrate that (1) predator inspection behaviour in the glowlight tetra can be initiated by chemical cues, (2) chemically mediated inspection behaviour is affected by the presence of alarm pheromone, and (3) inspectors benefit by acquiring the recognition of novel predators. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
Male and female red swordtails Xiphophorus helleri exposed in the laboratory to swordtail skin extract, fathead minnow Pimephales promelas skin extract and distilled water, significantly decreased activity in response to conspecific skin extract compared to minnow skin extract or distilled water. Moreover, males and females responded differentially to conspecific skin extract. Males tended to occupy the top compartment of the tank, whereas females tended to occupy the bottom compartment and seek shelter more. In a second experiment swordtails reduced activity significantly more in response to swordtail skin extract compared to closely related guppy Poecilia reticulata skin extract, minnow skin extract or distilled water. Swordtails also reduced activity significantly more to guppy skin extract compared to minnow skin and distilled water. However, males and females did not respond differentially to guppy skin extract. This suggests that chemical alarm cues are partially conserved within the Poeciliidae, but the level of response is of lower intensity to heterospecific skin extracts.  相似文献   

5.
A wide diversity of aquatic organisms release alarm signals upon being attacked by a predator. Alarm signals may 'warn' nearby individuals of danger. Moreover, the signals may be important in facilitating learned recognition of unknown stimuli. It is common for different prey species to respond to each other's chemical alarm signals. In many cases, the responses are learned but no learning mechanisms have been identified to date. In this study we tested whether prey fish can learn the identity of an unknown alarm signal when they detect it in association with conspecific alarm cues in the diet of a predator. Chemical alarm cues are known to be conserved in the diet of predators. We conditioned fathead minnows ( Pimephales promelas ) with chemical stimuli from predatory yellow perch ( Perca flavescens ) fed a mixed diet of minnows and brook stickleback ( Culaea inconstans ), perch fed a mixed diet of swordtails ( Xiphophorus helleri ) and stickleback or distilled water. Minnows were subsequently exposed to chemical alarm cues of injured stickleback alone. Those minnows previously conditioned with perch fed a mixed diet of minnows and stickleback increased their use of shelter and 'froze' significantly more than minnows previously conditioned with perch fed a diet of swordtails and stickleback or those exposed to distilled water. These data demonstrate a mechanism by which minnows can learn the identity of a heterospecific alarm signal.  相似文献   

6.
In aquatic environments, chemical cues serve as an important source of information for the detection of predation risk. Here, we investigate the response of convict cichlids, Cichlasoma nigrofasciatum, to injury-released chemical cues. We exposed pairs of juvenile convict cichlids first to dechlorinated tap water (control), then later to one of two test stimuli: 1. chemical cues from injured convict cichlids; or 2. chemical cues from injured mosquito fish, Gambusia affinis. Gambusia are allopatric and phylogenetically unrelated to convict cichlids. Gambusia skin was used to control for a general response to injured fish. In response to conspecific cues, convict cichlids significantly increased time spent near the bottom of test aquaria and time under a shelter object. In response to Gambusia skin, convict cichlids tended to increase time spent near the tank bottom but did not increase use of the shelter object. There was a trade-off between antipredator and agonistic behaviours. In response to convict cichlid cues, there was a significant reduction in the frequency of approaches and bites. Gambusia skin extract had no significant effect on aggressive behaviour. These data suggest a species-specific antipredator response to conspecific alarm pheromones in a New World cichlid fish and demonstrate a trade-off between predator avoidance and intraspecific aggression. Further, the presence of an alarm response in this model species sets the stage for the use of chemical cues as a research tool to manipulate predation risk in studies of the interaction between predation risk and reproductive behaviour.  相似文献   

7.
A diversity of aquatic organisms release chemical alarm signals when attacked or captured by a predator. These alarm signals are thought to warn other conspecifics of danger and, consequently, may benefit receivers by increasing their survival. Here we experimentally investigated the differences in behaviour and survival of hatchery-reared juvenile brook charr Salvelinus fontinalis that had been exposed to either brook charr skin extract (experimental treatment) or a control of swordtail skin extract (control treatment). Charr exposed to conspecific skin extract exhibited a significant reduction in movement and/or altered their foraging behaviour in the laboratory when compared with charr exposed to swordtail skin extract. We also exposed charr to either water conditioned by a single brook charr disturbed by a predatory bird model or water conditioned by a single undisturbed brook charr. Charr exposed to disturbance signals reduced activity significantly more than charr exposed to chemical stimuli from undisturbed charr. These results demonstrate the existence of both damage-released alarm signals and disturbance signals in brook charr. Wild brook charr also responded to damage-released alarm cues under natural conditions. Charr avoided areas of a stream with minnow traps labelled with conspecific alarm cues vs. control cues. During staged encounters with chain pickerel Esox niger in the laboratory, predator-naive charr fry were better able to evade the predator if they were previously warned by an alarm signal, thus suggesting a survival benefit to receivers. Collectively, these results demonstrate that the presence of alarm signals in brook charr has important implications for understanding predator–prey interactions.  相似文献   

8.
A diversity of fishes release chemical cues upon being attacked by a predator. These cues, commonly termed alarm cues, act as sources of public information warning conspecifics of predation risk. Species which are members of the same prey guild (i.e. syntopic and share predators) often respond to one another's alarm cues. The purpose of this study was to discriminate avoidance responses of fishes to conspecific alarm cues and cues of other prey guild members from responses to unknown damaged fish odours and novel odours. We used underwater video to measure avoidance responses of freshwater littoral species, namely fathead minnows (Pimephales promelas), finescale dace (Chrosomus neogaeus), and brook stickleback (Culaea inconstans), to both injured fish cues and novel non‐fish odours. The cyprinids (minnows and dace) showed significant avoidance of minnow cues over swordtail cues, morpholine, and the control of distilled water and tended to avoid fathead cues over cues of known prey guild members (stickleback). Cyprinids also significantly avoided cues of stickleback over unknown heterospecific cues (swordtail) and tended to avoid stickleback cues over morpholine and the distilled water control. Stickleback significantly avoided fathead minnow extract over the distilled water and tended to avoid stickleback and swordtail over distilled water. We conclude that fishes in their natural environment can show dramatic changes in behaviour upon exposure to alarm cues from conspecifics and prey guild members. These responses do not represent avoidance of cues of any injured fish or any novel odour.  相似文献   

9.
Sexually dimorphic traits in many mate recognition systems have evolved in response to preexisting female biases. These biases are often quite general in form and are likely to be shared by predators, thereby imposing a cost on male trait expression. The Mexican tetra Astyanax mexicanus (Pisces: Characidae), a visual predator of swordtail fishes, exhibits the same visual preferences for male body size morphs as do females. Furthermore, tetras in populations where swordtails are absent prefer males with sword ornaments over males with swords removed. The predator preference is thus likely to have arisen prior to contact with fishes bearing the ornament, as has also been suggested for mating preferences for swords.  相似文献   

10.
Histological analysis of the skin of common bully Gobiomorphus cotidianus , a New Zealand native eleotrid fish, revealed the presence of club cells in the epidermis. Epidermal club cells are frequently associated with the production of alarm substance (Schreckstoff). The behavioural responses of perch‐naïve and perch‐experienced common bullies to either conspecific skin extract or chemical cues from an introduced predator, perch Perca fluviatilis , were then examined. Both perch‐naïve and perch‐experienced common bullies exhibited a behavioural response when exposed to conspecific skin extract, indicating the probable presence of an alarm substance. In contrast, only perch‐experienced common bullies recognized and exhibited a subsequent behavioural response to the odour of perch. This study is the first to document the presence of epidermal club cells and a behavioural response to a conspecific chemical alarm signal for fishes in the Eleotridae. The results indicate that common bully can learn to recognize perch odour as a threat, and that this ability may be a result of previous predator labelling involving a conspecific alarm substance.  相似文献   

11.
Some prey can distinguish between chemical cues from predators fed different diets. Here we document the first evidence of diet-based chemical discrimination of predators in a terrestrial arthropod and measure the survival value of behavioural responses to predator chemical cues. We tested activity level and avoidance behaviour of the wolf spider, Pardosa milvina, to faeces and silk associated with the predatory wolf spider, Hogna helluo, fed either P. milvina or crickets (Acheta domesticus). We then measured survival of Pardosa in the presence of Hogna when placed on blank paper or paper previously occupied by Hogna fed either crickets or Pardosa. Filter paper previously occupied by Hogna from each diet treatment or a blank control were simultaneously presented to adult female Pardosa among four treatment pairs (N=15/treatment): (1) blank paper/blank paper, (2) Hogna fed crickets/blank, (3) Hogna fed Pardosa /blank and (4) Hogna fed Pardosa / Hogna fed crickets. Cues from Hogna fed either crickets or Pardosa elicited significantly less activity relative to blank controls. Cues from Hogna fed Pardosa elicited a significantly greater reduction in activity than Hogna fed crickets. When given a choice, Pardosa initially chose the blank substrate significantly more often than either substrate with Hogna cues. Spiders survived longer in the presence of cues from either Hogna diet treatment relative to blank paper, but there was no significant effect of predator diet on survival. Results suggest diet-based predator cues elicit different levels of activity in Pardosa that reduce predation in the presence of Hogna. Copyright 2001 The Association for the Study of Animal Behaviour.  相似文献   

12.
Groups of fathead minnows Pimephales promelas were tested to determine if they avoided areas of a test tank labelled with the faeces of a predator (northern pike, Esox lucius ) which had recently been fed minnows, brook sticklebacks Culaea inconstans , or swordtails Xiphophorus helleri. Minnows exhibited a fright reaction upon presentation of sponges labelled with faeces, when the pike had consumed minnows or sticklebacks, but not swordtails (which lack alarm pheromones). The fright reaction was characterized by increased shoal cohesiveness and increased dashing and freezing behaviour. Minnows avoided the area of the tank containing the faeces from pike on diets of minnows or sticklebacks, but not from pike fed a diet of swordtails. These data demonstrate that: (1) minnows actively avoid the faeces of pike fed minnows or brook sticklebacks, and (2) minnows exhibit a fright reaction to the faeces of a pike fed brook sticklebacks.  相似文献   

13.
Pike-naive fathead minnows (Pimephales promelas) were fed ad libitum or deprived of food for 12, 24, or 48 h and then exposed to either conspecific alarm pheromone or distilled water and the odour of a predatory northern pike (Esox lucius). Minnows fed ad libitum or deprived for 12 h showed a stereotypic alarm response to the alarm pheromone (increased time under cover objects and increased occurrence of dashing and freezing behaviour); those deprived of food for 24 h showed a significantly reduced alarm response, while those deprived of food for 48 h did not differ significantly from the minnows exposed to a distilled water control. Upon subsequent testing in an Opto-Varimex activity meter, all groups initially exposed to alarm pheromone and pike odour exhibited an alarm response when exposed to pike odour alone. Those initially conditioned with distilled water and pike odour did nor show an alarm response to pike odour alone. These results demonstrate that there exists a significant trade-off between hunger level and predator-avoidance behaviour in fathead minnows and that minnows can learn the chemical cues of a predatory northern pike through association with alarm pheromone even in the absence of an observable alarm response.  相似文献   

14.
I studied the effect of disturbance chemical cues on fish that make trade-offs between foraging in an open area and remaining in a safe refuge. I used convict cichlids Archocentrus nigrofasciatus that were either visually exposed to a predator (n = 8) or exposed to water conditioned by chemical cues from disturbed conspecifics (n = 8). Fish visually exposed to a predator decreased their ingestion rate and spent more time in the refuge than in the foraging area, while fish receiving water from frightened conspecifics did not alter their ingestion rate or time spent in the refuge and foraging site, but increased their spatial occupation (i.e., motion). These results suggest that convict cichlids recognized the predator by visual cues. Moreover, disturbance cues are a form of threatening public information that may increase fish spatial occupation due to increased exploring behaviour; but is not sufficiently alarming to alter feeding or increase refuge use.  相似文献   

15.
The predation pressure and food availability to which individuals are exposed during their life histories shape inspection behaviour in animals. In this study, we aimed to test whether such behaviours varied with prior experience (predation, starvation or both treatments) or measurement condition (with or without the presence of a predator; here, the snakehead fish, Channa argus) in the fish species Spinibarbus sinensis, known as qingbo. Unexpectedly, prior predator experience showed no significant effect on inspection behaviour as demonstrated by either the frequency or the duration of each activity outside shelter or on cooperation as demonstrated by the inter-individual distance or synchronization of speed. This may have been due to the different adjustments in behaviour among individuals (more shelter use vs. more inspection), the predator treatment used in the present study (exposure to caged predator rather than direct predation) and/or a species-specific strategy in the qingbo. The starved fish displayed shorter inspection latency, increased inspection behaviour and greater cooperation when measured without the predator; however, when measured in the presence of the predator, the starved fish showed increased inspection frequency but shorter inspection duration, possibly due to the compromise between energy needs and predation risk. Similar to those of the predation group, the fish from the double-treated group showed no difference in inspection behaviour compared to the control group under the predator-absent condition, while the high-frequency, short-duration inspection behaviours remained the same as in the starved group. These findings suggested that the adjustment of inspection behaviour and related cooperation are rather complicated according to either predator experience or food deprivation, partially due to the inter-individual differences in behavioural adjustment and/or different environmental conditions.  相似文献   

16.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

17.
In two laboratory experiments we tested juvenile yellow perch, Perca flavescens, for behavioural responses to alarm cues of injured conspecifics and several prey guild members: adult perch, Iowa darters, Etheostoma exile and spottail shiners, Notropis hudsonius. Spottail shiners are phylogenetically distant to yellow perch whereas Iowa darters and perch are both members of the Family Percidae. Groups of juvenile yellow perch increased shoal cohesion and movement towards the substrate after detecting conspecific alarm cues when compared to cues of injured swordtails, Xiphophorus helleri, a species phylogenetically distant from perch. Individual juvenile perch increased shelter use and froze more when exposed to chemical alarm cues from both juvenile and adult perch, shiners and darters compared to exposure to injured swordtail cues or distilled water. The response to cues of darters may indicate that alarm cues are evolutionarily conserved within percid fishes or that perch had learned to recognize darter cues. The response to spot tail shiners likely represents learned recognition of the cues of a prey guild member.  相似文献   

18.
Prey often avoid predator chemical cues, and in aquatic systems, prey may even appraise predation risk via cues associated with the predator's diet. However, this relationship has not been shown for terrestrial predator-prey systems, where the proximity of predators and prey, and the intensity of predator chemical cues in the environment, may be less than in aquatic systems. In the laboratory, we tested behavioural responses (avoidance, habituation and activity) of terrestrial red-backed salamanders, Plethodon cinereus, to chemical cues from garter snakes, Thamnophis sirtalis, fed either red-backed salamanders or earthworms (Lumbricus spp.). We placed salamanders in arenas lined with paper towels pretreated with snake chemicals, and monitored salamander movements during 120 min. Salamanders avoided substrates preconditioned by earthworm-fed (avoidanceX+/-SE=91.1+/-2.5%, N=25) and salamander-fed (95.2+/-2.5%, N=25) snakes, when tested against untreated substrate (control). Salamanders avoided cues from salamander-fed snakes more strongly (75.2+/-5.5%, N=25) than earthworm-fed snakes when subjected to both treatments simultaneously, implying that salamanders were sensitive to predator diet. Salamanders tended to avoid snake substrate more strongly during the last 60 min of a trial, but activity patterns were similar between salamanders exposed exclusively to control substrate versus those subject to snake cues. In another experiment, salamanders failed to avoid cues from dead conspecifics, suggesting that the stronger avoidance of salamander-fed snakes in the previous experiment was not directly due to chemical cues emitted by predator-killed salamanders. Salamanders also did not discriminate between cues from a salamander-fed snake versus a salamander-fed snake that was recently switched (i.e. <14 days) to an earthworm diet. Our results imply that terrestrial salamanders are sensitive to perceived predation risk via by-products of predator diet, and that snake predators rather than dead salamanders may be largely responsible for the release of such chemicals. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

19.
Chemical signaling is a vital mode of communication for most organisms, including larval amphibians. However, few studies have determined the identity or source of chemical compounds signaling amphibian defensive behaviors, in particular, whether alarm pheromones can be actively secreted from tadpoles signaling danger to conspecifics. Here we exposed tadpoles of the common toad Bufo bufo and common frog Rana temporaria to known cues signaling predation risk and to potential alarm pheromones. In both species, an immediate reduction in swimming activity extending over an hour was caused by chemical cues from the predator Aeshna cyanea (dragonfly larvae) that had been feeding on conspecific tadpoles. However, B. bufo tadpoles did not detectably alter their behavior upon exposure to potential alarm pheromones, neither to their own skin secretions, nor to the abundant predator-defense peptide bradykinin. Thus, chemicals signaling active predation had a stronger effect than general alarm secretions of other common toad tadpoles. This species may invest in a defensive strategy alternative to communication by alarm pheromones, given that Bufonidae are toxic to some predators and not known to produce defensive skin peptides. Comparative behavioral physiology of amphibian alarm responses may elucidate functional trade-offs in pheromone production and the evolution of chemical communication.  相似文献   

20.
Fathead minnows, Pimephales promelas, and glowlight tetras, Hemigrammus erythrozonus, were tested for their ability to associate predation risk with novel auditory stimuli after auditory stimuli were presented simultaneously with chemical alarm cues. Minnows and tetras gave a fright response when exposed to skin extract (alarm cue) and an artificial auditory sound stimulus, but no response to water (control) and sound, indicating that they did not have a pre-existing aversion to the auditory stimulus. When retested with sound stimuli alone, minnows and glowlight tetras that had previously been conditioned with water and sound showed no response, but those that had been conditioned with alarm cues and sound exhibited antipredator behaviour (reduced activity) in response to the auditory cue. This is the first known demonstration of learned association of an auditory cue with predation risk, and raises questions about the role of sound in mediating predator-prey interactions in fishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号