首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue oxygen binding protein hemocyanin from scorpion Buthus sindicus has been investigated using low resolution techniques. The native protein is a polymer of eight different types of subunits arranged in four cubic hexameric form (4x6-mers) as previously annotated using a combination of various types of chromatographic and electrophoretic techniques. In addition, both "top face" as well as the "side view" of the native assembly has also been identified from the negatively stained specimens using transmission electron microscopy confirming the overall structural features of arthropodan hemocyanins. These results are also supported from data obtained from another low resolution technique i.e. Small Angle X-ray scattering (SAXS). SAXS results under oxygenated and deoxygenated states represent a validation case for this technique with key conformational changes of Rg 88.0 --> 86.0 A; +/- 1% (Dmax 280.0 --> 290.0 A; +/- 2%), respectively suggesting that the oxygenated hemocyanin is longer then the deoxygenated hemocyanin by almost 2 A;. Likewise, active conformations of the purified structural and functional subunit Bsin1 under oxygenated and deoxygenated states also determined by SAXS measurements revealed a Rg value of 25.2 --> 25.7 A; +/- 1% (Dmax 75.0 --> 75.5 A; +/- 2%), respectively suggesting very little or no contribution of the individual subunit in the overall conformational change in the native assembly during molecular breathing. Preliminary molecular shapes for the oxy-molecules, calculated directly from the scattering profile-alone in a model-independent procedure, superimpose well on other closely related known three-dimensional structures of the same size. Structural and functional aspects of the native as well as purified subunit and the application of these low resolution techniques like transmission electron microscopy and Small Angle X-ray scattering have been discussed.  相似文献   

2.
The primary structures of four low molecular mass peptides (Bs 6, 8, 10 and 14) from scorpion Buthus sindicus were elucidated via combination of Edman degradation and matrix-assisted laser desorption ionization mass spectrometry. Bs 8 and 14 are cysteine-rich, thermostable peptides composed of 35-36 residues with molecular weights of 3.7 and 3.4 kDa, respectively. These peptides show close sequence homologies (55-78%) with other scorpion chlorotoxin-like short-chain neurotoxins (SCNs) containing four intramolecular disulfide bridges. Despite the sequence variation between these two peptides (37% heterogeneity) their general structural organization is very similar as shown by their clearly related circular dichroism spectra. Furthermore, Bs6 is a minor component, composed of 38 residues (4.1 kDa) containing six half-cystine residues and having close sequence identities (40-80%) with charybdotoxin-like SCNs containing three disulfide bridges. The non-cysteinic, bacic and thermolabile Bs10 is composed of 34 amino acid residues (3.7 kDa), and belongs to a new class of peptides, with no sequence resemblance to any other so far reported sequence isolated from scorpions. Surprisingly, Bs10 shows some limited sequence analogy with oocyte zinc finger proteins. Results of these studies are discussed with respect to their structural similarities within the scorpion LCNs, SCNs and other biologically active peptides.  相似文献   

3.
Four depressant insect-selective neurotoxin analogs (termed Bs-dprIT1 to 4) from the venom of the scorpion Buthus sindicus were purified to homogeneity in a single step using reverse-phase HPLC. The molecular masses of the purified toxins were 6820.9, 6892.4, 6714.7, and 6657.1 Da, respectively, as determined by mass spectrometry. These long-chain neurotoxins were potent against insects with half lethal dose values of 67, 81, 103, and 78 ng/100 mg larva and 138, 160, 163, and 142 ng/100 mg cockroach, respectively, but were not lethal to mice even at the highest applied dose of 10 microg/20 g mouse. When injected into blowfly larvae (Sarcophaga falculata), Bs-dprIT1 to 4 induced classical manifestations of depressant toxins, i.e., a slow depressant flaccid paralysis. The primary structures of Bs-dprIT 1 to 4 revealed high sequence homology (60-75%) with other depressant insect toxins isolated from scorpion venoms. Despite the high sequence conservation, Bs-dprIT1 to 4 showed some remarkable features such as (i) the presence of methionine (Met(6) in Bs-dprIT1 and Met(24) in Bs-dprIT2 to 4) and histidine (His(53) and His(57) in Bs-dprIT1) residues, i.e., amino acid residues that are uncommon to this type of toxin; (ii) the substitution of two highly conserved tryptophan residues (Trp43 --> Ala and Trp53 --> His) in the sequence of Bs-dprIT1; and (iii) the occurrence of more positively charged amino acid residues at the C-terminal end than in other depressant insect toxins. Multiple sequence alignment, sequence analysis, sequence-based structure prediction, and 3D homology modeling studies revealed a protein fold and secondary structural elements similar to those of other scorpion toxins affecting sodium channel activation. The electrostatic potential calculated on the surface of the predicted 3D model of Bs-dprIT1 revealed a significant positive patch in the region of the toxin that is supposed to bind to the sodium channel.  相似文献   

4.
Scorpion venoms are among the most widely known source of peptidyl neurotoxins used for callipering different ion channels, e.g., for Na(+), K(+), Ca(+) or Cl(-). An alpha-toxin (Bs-Tx28) has been purified from the venom of scorpion Buthus sindicus, a common yellow scorpion of Sindh, Pakistan. The primary structure of Bs-Tx28 was established using a combination of MALDI-TOF-MS, LC-ESI-MS, and automated Edman degradation analysis. Bs-Tx28 consists of 65 amino acid residues (7274.3+/-2Da), including eight cysteine residues, and shows very high sequence identity (82-94%) with other long-chain alpha-neurotoxins, active against receptor site-3 of mammalian (e.g., Lqq-IV and Lqh-IV from scorpions Leiurus sp.) and insect (e.g., BJalpha-IT and Od-1 from Buthotus judaicus and Odonthobuthus doriae, respectively) voltage-gated Na(+) channels. Multiple sequence alignment and phylogenetic analysis of Bs-Tx28 with other known alpha- and alpha-like toxins suggests the presence of a new and separate subfamily of scorpion alpha-toxins. Bs-Tx28 which is weakly active in both, mammals and insects (LD(50) 0.088 and 14.3microg/g, respectively), shows strong induction of the rat afferent nerve discharge in a dose-dependent fashion (EC(50)=0.01microg/mL) which was completely abolished in the presence of tetrodotoxin suggesting the binding of Bs-Tx28 to the TTX-sensitive Na(+)-channel. Three-dimensional structural features of Bs-Tx28, established by homology modeling, were compared with other known classical alpha-mammal (AaH-II), alpha-insect (Lqh-alphaIT), and alpha-like (BmK-M4) toxins and revealed subtle variations in the Nt-, Core-, and RT-CT-domains (functional domains) which constitute a "necklace-like" structure differing significantly in all alpha-toxin subfamilies. On the other hand, a high level of conservation has been observed in the conserved hydrophobic surface with the only substitution of W43 (Y43/42) and an additional hydrophobic character at position F40 (L40/A/V/G39), as compared to the other mentioned alpha-toxins. Despite major differences within the primary structure and activities of Bs-Tx28, it shares a common structural and functional motif (e.g., transRT-farCT) within the RT-CT domain which is characteristic of scorpion alpha-mammal toxins.  相似文献   

5.
The mature spermatozoa of Buthus occitanus are threadlike in shape and divided into sperm head, middle piece, and end piece. The sperm head is corkscrew shaped anteriorly and in this region bears an unusual acrosomal complex consisting of a ring-shaped acrosomal vacuole associated with a subacrosomal filament and a perinuclear amorphous component. The subacrosomal filament extends posteriorly into a tube-like invagination of the elongated nucleus. The middle piece is characterized by elongated mitochondria which spiral around the anterior part of the flagellum in an extended collar separated from the flagellum by an extracellular cleft, termed the central flagellar tunnel. In addition to the usual 9 × 2 + 2 axonemal pattern in flagella, 9 × 2 + 1 and 9 × 2 + 3 patterns also were observed. The end piece is represented by the free flagellum. Similarities and diversities of scorpionid spermatozoa are discussed with respect to systematic relationships.  相似文献   

6.
Eight immunologically pure subunits were isolated from Androctonus australis hemocyanin. Antisera specific against each of these were prepared. Two subunits associate to form a heteroöligomer which is probably one of the bridges visible in electron microscopy of the native molecule. There is no cross-reactivity between native subunits. When denatured by 7 m urea, the specific antigenic determinants disappear and a broader specificity appears. This is probably due to the unfolding of the molecule which unmasks deeply buried antigenic sites.  相似文献   

7.
Cai Z  Xu C  Xu Y  Lu W  Chi CW  Shi Y  Wu J 《Biochemistry》2004,43(13):3764-3771
BmBKTx1 is a 31-amino acid peptide identified from the venom of the Chinese scorpion Buthus martensi Karsch, blocking high-conductance calcium-activated potassium channels. Sequence homology analysis indicates that BmBKTx1 is a new subfamily of short-chain alpha-KTx toxins of the potassium channel, which we term alpha-KTx19. Synthetic BmBKTx1 was prepared by using solid-phase peptide synthesis. Two-dimensional NMR spectroscopy techniques were used to determine the solution structure of BmBKTx1. The results show that the BmBKTx1 forms a typical cysteine-stabilized alpha/beta scaffold adopted by most short-chain scorpion toxins. The structure of BmBKTx1 consists of a two-stranded antiparallel beta-sheet (residues 20-29) and an alpha-helix (residues 5-15). The three-dimensional structure of BmBKTx1 was also compared with those of two function-related scorpion toxins, charybdotoxin (ChTx) and BmTx1, and their structural and functional implications are discussed.  相似文献   

8.
9.
The hemocyanin from the crayfish Jasus edwardsii(=lalandii) has been studied using ultracentrifugation, viscosity, circular dichroism and oxygen binding techniques. Sedimentation velocity experiments at pH 7.0 indicated the presence of principal species with S 20w=16.4 S, and at higher pH the presence of a species with S20,w=5.2S. Sedimentation equilibrium experiments yielded molecular weights of 490 000 and 81 000 respectively, indicating that the larger unit is a hexamer of the monomer unit. However, preliminary experiments with gel filtration and electrophoresis under denaturing conditions indicate that more than one monomer species may be present with molecular weight in the range 76-100 000. Circular dichroism (CD) spectra are presented at pH 7.0,8.6,10.0 and 11.0 for oxy-, deoxy- and apo-hemocyanins. Slight differences were observed in the magnitude of the bands in the presence or absence of Mg++. Oxygen binding studies have been made at pH 6.1,7.0,8.8 and 10.6, in the presence of 0.01 M MgCl2. The extent of cooperative binding was indicated by a maximum value of n=3.7, and a pronounced bohr effect was observed.  相似文献   

10.
An anti-epilepsy peptide (AEP) was isolated and purified from venom of the scorpion Buthus martensii Karsch. The purification procedure included CM-Sephadex C-50 chromatography, gel filtration on Sephadex G-50 and DEAE-Sephadex A-50 chromatography. Its homogeneity was demonstrated by pH 4.3 polyacrylamide-disc-gel electrophoresis, focusing electrophoresis and SDS/polyacrylamide-disc-gel electrophoresis. The Mr of this peptide, calculated from measurements in SDS/15%-polyacrylamide-disc-gel and SDS/20%-polyacrylamide-disc-gel electrophoresis, is 8300. The isoelectric point is 8.52 by pH 8-9.5-range isoelectric focusing. No haemorrhagic or toxic activities were found. No toxicity was found even after the dose reached 28 mg/kg. The pharmacological tests showed that the AEP had no effect on heart rate, blood pressure or electrocardiogram, but strongly inhibited epilepsy induced by coriaria lactone and cephaloridine. The fluorescence spectrum showed that the peptide has a strong emission peak at 337 nm. Amino acid analysis suggested that the AEP is composed of 66 residues from 18 amino acids and has an Mr of 8290. The sequence of the first 50 N-terminal residues is as follows: Asp-Gly-Tyr-Ile-Arg-Gly-Ser-Asp-Asn-Cys-Lys-Val-Ser-Cys-Leu-Leu-Gly-Asn- Glu-Gly - Cys-Asn-Lys-Glu-Cys-Arg-Ala-Tyr-Gly-Ala-Ser-Tyr-Gly-Tyr-Cys-Trp-Thr-Val- Lys-Leu - Ala-Gln-Asp-Cys-Glu-Gly-Leu-Pro-Asp-Thr-.  相似文献   

11.
1H-NMR spectra of Buthus eupeus neurotoxin M9 (66 amino acid residues, four disulfide bonds) reveal two slowly exchangeable conformations at acidic pH. The spatial structure of the conformer prevailing under physiologically relevant conditions has been determined from two-dimensional 1H-NMR data treated by means of a distance geometry algorithm and refined by molecular modelling. Interrelation between the structure and function of mammalian neurotoxin M9 is discussed by comparing its conformation with those of the scorpion insectotoxins which exhibit different biological specificity (insectotoxins v-2, v-3 and I5A).  相似文献   

12.
The amino acid sequence of component C2, the polypeptide specific for subunit S of prostatic binding protein, the major secretory glycoprotein of the rat ventral prostate, has been determined. Its structure was established using the manual Edman degradation on the most relevant fragments obtained by enzymatic digestion of the S-carboxamidomethylated component C2 and the native subunit S and by chemical cleavage of the remaining undigestible 'cores' with cyanogen bromide. Component C2 contains 92 amino acids corresponding to a molecular weight of 10619. It is a slightly acidic polypeptide in which the acidic and basic residues are unevenly distributed. The N terminus is blocked and three cysteine residues are almost evenly distributed over the peptide chain. A highly polar region is found in position 23-34 and two hydrophobic segments are located in the C-terminal part of the molecule. Component C2 is compared with component C1 of subunit F and their high sequence homology reveals an evolutionary relationship.  相似文献   

13.
The complete amino acid sequence of an important toxin (toxin 14) from the venom of a Vietnamese scorpion (Buthus occitanus sp.) has been determined, which includes 35 amino acid residues and three disulfide bridges (molecular weight, 3843 Da). The comparison of the sequence with sequences of short scorpion toxins led us to conclude that toxin 14 belongs to a novel group of toxins affecting the excitability of myelinated nerves.  相似文献   

14.
An antitumor peptide (ANTP) was isolated and purified from the venom of the Chinese scorpion Buthus martensii Karsch. The purification procedure included gel filtration on Sephadex G-50 and Superdex 30 high resolution chromatography, Phenyl Sepharose 6 Fast Flow chromatography, and SP-Sepharose Fast Flow chromatography. Its homogeneity was demonstrated by size exclusion HPLC on TSK G2000 SW. The isoelectric point is more than 10 by pH 3-10 range isoelectric focusing. ANTP has a relative molecular mass of 6280, calculated from the measurement of 16.5% SDS-PAGE. The pharmacological tests showed that ANTP has antitumoral effects in the mouse S-180 fibrosarcoma model and Ehrlich ascites tumor model. Amino acid analysis suggested the ANTP is rich in glycine and does not have histidine and threonine. The sequence of the first 25 N-terminal residues is as follows: Val-Arg-Asp-Gly-Tyr-Ile-Ala-Asp-Asp-Lys-Asn-Cys-Ala-Tyr-Phe-Cys-Gly-Arg-Asn-Ala-Tyr-Cys-Asp-Asp-Glu.  相似文献   

15.
The subunit structure, dissociation, and unfolding of the hemoglobin of the earthworm, Lumbricus terrestris, were investigated by light scattering molecular weight methods and changes in optical rotatory dispersion (at 233 nm) and absorption in the Soret region. Urea and the alkylureas, methyl-, ethyl-, propyl-, and butylurea, were employed as the reagents to cause both dissociation and unfolding of the protein. Analysis of the light scattering data suggests that the dissociation patterns as a function of hemoglobin concentration in the various dissociating solvents can be described in quantitative terms, either as an equilibrium mixture consisting of parent duodecamers and hexamers of 3 x 10(6) and 1.5 x 10(6) molecular weight (in 1-3 M urea, 1-2 M methyl- and ethylurea, and 1 M propylurea), as a mixture of hexamers and monomers, the latter with a molecular weight of 250000 (i.e., in 4 M urea), or as a mixture of all three species of duodecamers, hexamers, and monomers, seen in 2 M propylurea. Parallel studies by optical rotation and absorption measurements indicate that there is little or no unfolding of the subunits at urea and alkylurea concentrations where complete dissociation to hexamers and extensive dissociation to monomers can be achieved. Further splitting of the monomers (A subunits) to smaller fragments of one-third to one-quarter of the molecular weight of the monomers (B subunits) is seen in the presence of 7 and 8 M urea (pH 7) and in alkaline urea to propylurea solutions. Analysis of the dissociation data of duodecamers to monomers, based on equations used in studies of the urea and amide dissociation of human hemoglobin A from our laboratory, suggests few urea and alkylurea binding sites at the areas of hexamer contacts in the associated duodecameric form of L. terrestris hemoglobin. This suggests that hydrophobic interactions are not the dominant forces that govern the state of association of L. terrestris hemoglobin relative to polar and ionic interactions. The unfolding effects of the ureas, at concentrations above the dissociation transitions, are closely similar to their effects on other globular proteins, suggesting that hydrophobic interactions play an important role in the maintenance of the folded conformation of the subunits. Use of the Peller-Flory equation, with binding constants based on free energy transfer data of hydrophobic amino acid side chains and denaturation data used in previous denaturation studies, gave a relatively good acount of the observed denaturation midpoints obtained with the various ureas supporting these conclusions.  相似文献   

16.
Summary The fine structure of trichobothria in the scorpions Buthus occitanus (Amoureux, 1789) and Euscorpius carpathicus (Linné, 1767) was investigated by electron microscopy. In both species, cuticular and cellular characteristics are very similar. The articulation of the hair corresponds to that of other arachnid hair sensilla. The receptor endings are excentrically attached to the hair base. They consist of an enveloped S-shaped bundle of seven dendrites in B. occitanus and four in E. carpathicus. Neighbouring outer dendritic segments differ a great deal in diameter and ciliary modification. In B. occitanus, three enveloping cells and several additional secretory cells surround the inner dendritic segments. Structural characteristics are compared to those of other arachnid sensilla and their possible functional significance is discussed.  相似文献   

17.
We have identified two separate hemocyanin types (HtH1 and HtH2) in the European abalone Haliotis tuberculata. HtH1/HtH2 hybrid molecules were not found. By selective dissociation of HtH2 we isolated HtH1 which, as revealed by electron microscopy and SDS/PAGE, is present as didecamers of a approximately 400 kDa subunit. Immunologically, HtH1 and HtH2 correspond to keyhole limpet hemocyanin (KLH)1 and KLH2, respectively, the two well-studied hemocyanin types of the closely related marine gastropod Megathura crenulata. On the basis of limited proteolytic cleavage, two-dimensional immunoelectrophoresis, SDS/PAGE and N-terminal sequencing, we identified eight different 40-60 kDa functional units in HtH1, termed HtH1-a to HtH1-h, and determined their linear arrangement within the elongated subunit. From Haliotis mantle tissue, rich in hemocyanin-producing pore cells, we isolated mRNA and constructed a cDNA library. By expression screening with HtH-specific rabbit antibodies, a cDNA clone was isolated and sequenced which codes for the three C-terminal functional units f, g and h of HtH1. Their sequences were aligned to those available from other molluscs, notably to functional unit f and functional unit g from the cephalopod Octopus dofleini. HtH1-f, which is the first sequenced functional unit of type f from a gastropod hemocyanin, corresponds to functional unit f from Octopus. Also functional unit g from Haliotis and Octopus correspond to each other. HtH1-h is a gastropod hemocyanin functional unit type which is absent in cephalopods and has not been sequenced previously. It exhibits a unique tail extension of approximately 95 amino acids, which is lacking in functional units a to g and aligns with a published peptide sequence of 48 amino acids from functional unit h of Helix pomatia hemocyanin. The new Haliotis sequences are discussed with respect to their counterparts in Octopus, the 15 A three-dimensional reconstruction of the KLH1 didecamer from electron micrographs, and the recent 2.3 A X-ray structure of functional unit g from Octopus hemocyanin.  相似文献   

18.
Tong X  Zhu J  Ma Y  Chen X  Wu G  He F  Cao C  Wu H 《Biochemistry》2007,46(40):11322-11330
The solution structure of an alpha-insect toxin from Buthus martensii Karsch, BmKalphaIT01, has been determined by two-dimensional NMR spectroscopy and molecular modeling techniques. Combining the sequence homology comparison and toxicity bioassays, BmKalphaIT01 has been suggested to be a natural mutant of alpha-insect toxins and so can serve as a tool to study the relationship of structure-function among this group of toxins. The overall structure of BmKalphaIT01 shares a common core structure consisting of an alpha-helix packed against a three-stranded antiparallel beta-sheet, which exhibits distinctive local conformations within the loops connecting these secondary structure elements. The solution structure of BmKalphaIT01 features a non-proline cis peptide bond between Asn9 and Tyr10, which is proposed to mediate the spatial closing of the five-residue turn (Gln8-Cys12) and the C-terminal segment (Arg58-His64) to form the NC domain and confer the toxin insect-specific bioactivity. Conformational heterogeneity is observed in the solution of BmKalphaIT01 and could be attributed to the cis-trans isomerization of the peptide bond between residues 9 and 10. The minor conformation of BmKalphaIT01 with a trans peptide bond between Asn9 and Tyr10 may be responsible for its moderate bioactivity against mammals. The cis-trans isomerization of the peptide bond between residues 9 and 10 may be the structural basis of dual pharmacological activities of alpha-insect and alpha-like scorpion toxins, which is supported by the fact that conformational heterogeneity occurs in the solution structures of LqhalphaIT, LqqIII, and LqhIII and by comparison of the solution structure of BmKalphaIT01 with those of some relevant alpha-type toxins.  相似文献   

19.
The human plasma metallo-protease carboxypeptidase N of Mr 280,000 consists of two small, enzymatically active subunits of Mr 50,000 and two large subunits. Only the large subunits are glycosylated. They may have a function in stabilizing the complex in plasma. The N-terminal sequence of the small subunit was determined from the isolated protein and used to specify a unique 59-mer oligonucleotide probe. A cDNA clone of 1.7 kbp containing the entire coding sequence of the small subunit of carboxypeptidase N was isolated from a human-liver cDNA library. The cDNA clone encodes a signal sequence of 20 amino acids and the 438 amino acids of the mature subunit. There is a remarkable primary structure similarity of 49% to bovine carboxypeptidase E (enkephalin convertase). A more distant relationship to the bovine pancreatic, digestive carboxypeptidases A and B or even to the metallo-endopeptidases is based mainly on the occurrence of conserved, mechanistically important residues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号