首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A number of different biogeographical studies of the Central Highlands of the United States have yielded conflicting area cladograms. We estimate the mtDNA phylogeny of populations of the slender madtom, Noturus exilis, a clear-water stream catfish. The goal is to compare population relationships to those reported in previous studies that used upland, stream-dwelling vertebrates. A region of the NADH dehydrogenase subunit 4 gene, along with adjacent tRNAs, was sequenced for population samples from 21 different Central Highlands rivers. Sequence difference among 39 haplotypes ranged from 0.1% to 4.8%. Most haplotypes were restricted to specific rivers and mapped well onto geography. Slender madtoms from different drainages contained mostly monophyletic groups of haplotypes genetically divergent from haplotypes found in other drainages, although a few haplotypes were found in well-separated drainages. The area cladogram for the slender madtom was not similar to any of the other cladograms for other species and species groups from the area. We discuss a variety of methodological and biological reasons for the discordance, and suggest that some of the discrepancies may be resolved by the sequencing of multiple genes per species. We recommend that more, and more extensive, intraspecific phylogeography studies should be conducted for species living in the Central Highlands rivers.  相似文献   

2.
I analyzed geographic partitioning of mitochondrial DNA (mtDNA) restriction-site variants in the spotted salamander, Ambystoma maculatum. Two highly divergent and geographically separate genetic lineages were identified that differed by a minimum of 19 restriction sites (6% sequence divergence). One of the lineages has a disjunct distribution with very closely related haplotypes occurring in Missouri, Arkansas, North Carolina, and Virginia. The other lineage is found in Michigan, Illinois, and Alabama. The geographic separation of highly divergent mtDNA haplotypes, a pattern that was predicted based on the sedentary nature of these salamanders, is evidence for long-term barriers to gene flow. In contrast, the large-scale disjunction of very similar haplotypes suggests recent, long-distance gene flow and does not match the phylogeographic expectation for a small terrestrial vertebrate. I explain this potential contradiction in the level of importance assigned to gene flow by a scenario in which historical barriers to gene flow account for the two divergent mtDNA assemblages, but stochastic sorting of ancestral polymorphism is responsible for the large-scale geographic disjunction. Ten of 16 populations collected in the Ozark Highlands were fixed for the same haplotype. I attribute this lack of detectable variation to recent colonization of this area, a hypothesis that is supported by paleoecological data and demonstrates the potential benefits of combining data from paleobotany, geology, and other disciplines to reconstruct the historical biogeography of a species.  相似文献   

3.
Two hundred seventeen male subjects from Costa Rica, Mexico, and the Hispanic population of the southwestern United States were studied. Twelve Y-chromosome STRs and the HVSI sequence of the mtDNA were analyzed to describe their genetic structure and to compare maternal and paternal lineages. All subjects are part of two NIMH-funded studies to localize schizophrenia susceptibility genes in Hispanic populations of Mexican and Central American ancestry. We showed that these three populations are similar in their internal genetic characteristics, as revealed by analyses of mtDNA and Y-chromosome STR diversity. These populations are related through their maternal lineage in a stronger way than through their paternal lineage, because a higher number of shared haplotypes and polymorphisms are seen in the mtDNA (compared to Y-chromosome STRs). These results provide evidence of previous contact between the three populations and shared histories. An analysis of molecular variance revealed no genetic differentiation for the mtDNA for the three populations, but differentiation was detected in the Y-chromosome STRs. Genetic distance analysis showed that the three populations are closely related, probably as a result of migration between close neighbors, as indicated by shared haplotypes and their demographic histories. This relationship could be an important common feature for genetic studies in Latin American and Hispanic populations.  相似文献   

4.
L. R. Hale  R. S. Singh 《Genetics》1991,129(1):103-117
Preliminary studies with restriction fragment length polymorphisms of mitochondrial DNA (mtDNA) in natural populations of Drosophila melanogaster revealed considerable variation in terms of nucleotide sequence and overall size. In this report we present data from more isofemale lines and more restriction enzymes, and explore the utility of the data in inferring a colonization history of this species. Size variation in the noncoding A + T-rich region is particularly plentiful, with size variants occurring in all restriction site haplotypes in all populations. We report here classes of small-scale mobility polymorphisms (apparent range of 20 bp) in specific restriction fragments in the coding region. The variation in one such fragment appears to be generated even more rapidly than in the noncoding region. On the basis of the distribution of restriction site haplotypes, the species range can be divided into three major regions along longitudinal lines: Euro-African populations are the most diverse and are taken to be oldest; Far East populations have a complex distribution of haplotypes; Western Hemisphere populations are the least diverse and are interpreted to be the youngest. The history inferred from mtDNA alone is remarkably similar to one based on several nuclear markers. The mtDNA haplotype distribution is also very different from that of allozymes in these same populations. We interpret this as further evidence that natural selection is still the most parsimonious explanation for the parallel latitudinal allozyme clines in this species.  相似文献   

5.
Phylogeographic analyses using mitochondrial DNA (mtDNA) have revealed many examples of apparently deep historical subdivisions ('phylogroups') within many vertebrates. It remains unclear whether these phylogroups represent independently evolving, adaptively differentiated lineages or groups that show little functional differentiation and, hence, will merge on contact. Here, we use mtDNA sequence data to evaluate the phylogeographic relationships between two of the northernmost populations of black ratsnakes (Pantherophis obsoletus complex) in Ontario, Canada and previously analysed populations in the United States. We then use population-level analyses to evaluate the level of adaptive divergence between previously established mtDNA phylogroups. Phylogenetic analyses show that southern Ontario snakes have mtDNA haplotypes that fall within the Central mtDNA phylogroup, as designated by Burbrink et al. (2000). In contrast, snakes in eastern Ontario carry either Central or Eastern-specific haplotypes. Within the hybrid region, we found highly variable frequencies of mtDNA haplotypes among isolated sub-populations, no association between variation in cytonuclear (mtDNA) and nuclear (microsatellite DNA) markers, no difference in survival or reproductive success among snakes with different mtDNA haplotypes, and no effect of mate similarity in mtDNA on female clutch size. These results argue that the Eastern and Central phylogroups have merged in this region, likely due to a lack of adaptive differentiation between individuals in each lineage. Hence, in these snakes, phylogeographic structure in mtDNA is more a reflection of historical isolation rather than adaptive divergence. The observed reticulation between lineages and lack of evidence for hybrid disgenesis also bears on the classification of these lineages as distinct species.  相似文献   

6.
We used 11 restriction endonucleases to study mtDNA variation in 101 Dall's porpoises Phocoenoides dalli from the Bering Sea and western North Pacific. There was little phylogeographic patterning among the 34 mtDNA haplotypes identified in this analysis, suggesting a strong historical connection among populations across this region. Nonetheless, mtDNA variation does not appear to be randomly distributed in this species. Both GST and AMOVA uncovered significant differences in the distribution of mtDNA variation between the Bering Sea and western North Pacific populations. These mtDNA results, coupled with differences in allozyme variation and parasite infestation, support the demographic distinctiveness of Bering Sea and western North Pacific stocks of Dall's porpoise. The lack of a strong phylogeographic orientation of mtDNA haplotypes within the Dall's porpoise is similar to the pattern reported in other vertebrates such as coyotes, blackbirds, chickadees, marine catfish, and catadromous eels. Like Dall's porpoise, these species are broadly distributed, and have large populations linked by moderate to high levels of gene flow. However, the more complex, deeply branched phylogenetic network of mtDNA haplotypes within Dall's porpoise, relative to these other vertebrates, suggests important differences between these species in the forces shaping mtDNA variation. One such force is the effective size of female populations, which appears to have been comparatively large and stable in Dall's porpoise.  相似文献   

7.
The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA scaled with body mass with mass exponents of 0.72, 0.78, and 1.05, respectively.  相似文献   

8.
The Central Highlands of North America contain a strikingly diverse assemblage of temperate freshwater fishes and have long been a focus of biogeographic studies. The rosyface shiner complex, Notropis rubellus and related species, is a member of this fauna exhibiting a disjunct highlands distribution occurring in the unglaciated regions of the Central Highlands and glaciated regions of the Central Lowlands. Until recently, N. rubellus was considered a single, widespread species exhibiting geographic variation in morphological characters. However, several studies have revealed that N. rubellus is a multi-species complex with closely related species endemic to drainages within each highland region. We examined genetic variation of the N. rubellus complex using a complete mtDNA cytochrome b gene sequence data set and combined mtDNA and published allozyme data sets. Parsimony and Bayesian analyses of the mitochondrial data set and parsimony analyses of a combined mitochondrial and allozyme data sets were largely consistent. Results of these analyses revealed ancient cryptic diversity within the N. rubellus complex that existed prior to the onset of Pleistocene glaciations. We identified seven strongly supported clades within the N. rubellus complex. Four clades are diagnosed as separate species (N. percobromus, N. rubellus, N. micropteryx and N. suttkusi) and three clades may represent undescribed forms. Relationships among these groups and their biogeographical patterns provided significant inferences on ichthyofaunal distributions in southeastern North America. These include the timing of the origin of the diversity, ancient drainage patterns and barriers to dispersal in the Central Highlands. The observation of increased diversity in N. rubellus suggests there may be greater diversity within other taxa with a similar distribution.  相似文献   

9.
A growing body of research supports the view that within‐species sequence variation in the mitochondrial genome (mtDNA) is functional, in the sense that it has important phenotypic effects. However, most of this empirical foundation is based on comparisons across populations, and few studies have addressed the functional significance of mtDNA polymorphism within populations. Here, using mitonuclear introgression lines, we assess differences in whole‐organism metabolic rate of adult Drosophila subobscura fruit flies carrying either of three different sympatric mtDNA haplotypes. We document sizeable, up to 20%, differences in metabolic rate across these mtDNA haplotypes. Further, these mtDNA effects are to some extent sex specific. We found no significant nuclear or mitonuclear genetic effects on metabolic rate, consistent with a low degree of linkage disequilibrium between mitochondrial and nuclear genes within populations. The fact that mtDNA haplotype variation within a natural population affects metabolic rate, which is a key physiological trait with important effects on life‐history traits, adds weight to the emergent view that mtDNA haplotype variation is under natural selection and it revitalizes the question as to what processes act to maintain functional mtDNA polymorphism within populations.  相似文献   

10.
We investigated the patterns of mitochondrial DNA variation in the global population of the commercial mushroom Agaricus bisporus . Through the analysis of RFLP's among 441 isolates from nine countries in North America and Eurasia, we found a total of 140 mtDNA haplotypes. Based on population genetic analysis, there are four genetically distinct natural populations in this species, found in coastal California, desert California, France and Alberta (Canada). While 134 of the 140 mtDNA haplotypes were unique to single geographical regions, two mtDNA haplotypes, mt001 and mt002, were found in almost every population surveyed. These two mtDNA haplotypes also predominate among cultivars used throughout the world for at least the last two decades. These two mtDNA haplotypes are more similar to the cosmopolitan groups of mtDNA haplotypes than to the indigeneous clusters of mtDNA haplotypes from the two Californian regions.  相似文献   

11.
Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations ( G ST = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers ( G ST = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.  相似文献   

12.
Plethodon shermani comprises a series of geographically disjunct populations occupying high-elevation mountain isolates. These populations hybridize at their borders with salamanders of the Plethodon glutinosus species complex, and past range expansions inferred from Pleistocene climatic cycles may have increased the possible genetic interactions between P. shermani and species of the P. glutinosus complex. Because mitochondrial DNA haplotypes often show introgression across species borders, we survey mtDNA variation for evidence of past and ongoing genetic interactions between P. shermani, its close relative Plethodon cheoah, and species of the P. glutinosus complex. Ongoing hybridization with the P. glutinosus-complex species Plethodon teyahalee is accompanied by extensive mitochondrial introgression in some Unicoi populations of P. shermani, but it has little genetic impact on P. shermani populations outside hybrid zones at three other isolates (Tusquitee, Wayah Bald, Standing Indian). Some Unicoi populations of P. shermani exhibit mtDNA evidence of past hybridization with diverse lineages from P. aureolus and P. glutinosus. The Tusquitee isolate of P. shermani is also characterized by mtDNA haplotypes most closely related to Plethodon aureolus and P. glutinosus, presumably introduced by past genetic contact with these species or with introgressed populations of Unicoi P. shermani. The mtDNA variation in sampled populations of the Wayah Bald and Standing Indian isolates of P. shermani appears largely unaffected by ongoing hybridization. Principal components analyses of allozymic data indicate that P. shermani isolates collectively form a genetically homogeneous unit clearly demarcated from species with which they have had current or past genetic interactions. Rapid mtDNA introgression associated with transient contacts between P. shermani and other species permits a fine-level resolution of evolutionary lineages not evident from allozymic data.  相似文献   

13.
1. Heterogeneous predation risks can select for predator-specific plastic defences in prey populations. However, diverse predation threats can generate diffuse selection, which, in turn, can lead to the evolution of more generalized reaction norms. Unreliable predator cues also can select for more generalized plasticity in prey. 2. Here, I evaluated the extent to which variation in risk from a focal predator vs. variation in risk from predator diversity and composition were associated with variation in body mass reaction norms in 18 prey populations. Toward this end, I assayed the body mass reaction norms in a common garden experiment for spotted salamander larvae Ambystoma maculatum in response to marbled salamander predators Ambystoma opacum, local predator richness and the densities of two auxiliary predator species. 3. When raised under controlled conditions, prey larvae generally were smaller when exposed to A. opacum kairomones. Among populations, the mean and slope of body mass variation was unrelated to A. opacum's local density. 4. Predator richness and several key environmental factors were not associated with reaction norm variation. Instead, the density of an auxiliary newt predator species was correlated with reduced mass reaction norm slopes. Results suggest that diffuse selection from auxiliary predators can modify the evolution of life-history plasticity.  相似文献   

14.
Delimiting the boundaries of species involved in radiations is critical to understanding the tempo and mode of lineage formation. Single locus gene trees may or may not reflect the underlying pattern of population divergence and lineage formation, yet they constitute the vast majority of the empirical data in species radiations. In this study we make use of an expressed sequence tag (EST) database to perform nuclear (nDNA) and mitochondrial (mtDNA) genealogical tests of species boundaries in Ambystoma ordinarium, a member of an adaptive radiation of metamorphic and paedomorphic salamanders (the Ambystoma tigrinum complex) that have diversified across terrestrial and aquatic environments. Gene tree comparisons demonstrate extensive nonmonophyly in the mtDNA genealogy of A. ordinarium, while seven of eight independent nuclear loci resolve the species as monophyletic or nearly so, and diagnose it as a well-resolved genealogical species. A differential introgression hypothesis is supported by the observation that western A. ordinarium localities contain mtDNA haplotypes that are identical or minimally diverged from haplotypes sampled from a nearby paedomorphic species, Ambystoma dumerilii, while most nDNA trees place these species in distant phylogenetic positions. These results provide a strong example of how historical introgression can lead to radical differences between gene trees and species histories, even among currently allopatric species with divergent life history adaptations and morphologies. They also demonstrate how EST-based nuclear resources can be used to more fully resolve the phylogenetic history of species radiations.  相似文献   

15.
A highly variable mitochondrial DNA (mtDNA) restriction fragment length polymorphism (RFLP) locus is used to assess the population structure of mitochondrial genomes in the gynodioecious plant Silene vulgaris at two spatial scales. Thirteen mtDNA haplotypes were identified within 250 individuals from 18 populations in a 20-km diameter region of western Virginia. The population structure of these mtDNA haplotypes was estimated as thetaST = 0.574 (+/- 0.066 SE) and, surprisingly, genetic differentiation among populations was negatively correlated with geographic distance (Mantel r = -0.246, P < 0.002). Additionally, mtDNA haplotypes were spatially clumped at the scale of meters within one population. Gender in S. vulgaris is determined by an interaction between autosomal male fertility restorers and cytoplasmic male sterility (CMS) factors, and seed fitness is affected by an interaction between gender and population sex ratio; thus, selection acting on gender could influence the distribution of mtDNA RFLP haplotypes. The sex ratio (females:hermaphrodites) varied among mtDNA haplotypes across the entire metapopulation, possibly because the haplotypes were in linkage disequilibrium with different CMS factors. The gender associated with some of the most common haplotypes varied among populations, suggesting that there is also population structure in male fertility restorer genes. In comparison with reports of mtDNA variation from other published studies, we found that S. vulgaris exhibits a large number of mtDNA haplotypes relative to that observed in other species.  相似文献   

16.
1. The white-clawed crayfish Austropotamobius pallipes has a widespread distribution in Europe, but since the last century its distribution has been severely affected by a combination of factors, particularly the disease crayfish plague, introduced by foreign crayfish species. At present A. pallipes is considered as vulnerable and endangered and measures are being taken in a number of countries to conserve it.
2. The application of genetics to conservation is of practical value particularly where restocking is being considered. This study assesses levels of genetic differentiation from an analysis of mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism of four populations sampled on a European scale. Six different composite haplotypes were detected among sixty-four crayfish representing the four populations. mtDNA nucleon diversity values within species ranged from 0.63% to 12.35%. A close genetic similarity was found between British and French populations of A. pallipes .
3. Results show that mtDNA can be as a suitable diagnostic marker for measuring genetic diversity between crayfish populations and that such information is of use in planning crayfish conservation strategies.  相似文献   

17.
We employed restriction site variation in mitochondrial (mt)DNA to determine if significant phylogeographic structure occurs in the North American cyprinid fish Cyprinella lutrensis. Digestion patterns from 16 restriction endonucleases identified fifty mtDNA haplotypes among 127 individuals of Cyprinella lutrensis assayed from localities in the Gulf Coastal Plain, the Great Plains, and the Central Lowlands. Nucleotide sequence divergence among haplotypes was highly variable (mean ± SE: 2.87%± 0.08; range: 0.14–9.24%). Maximum-parsimony analysis and the neighbour joining method of tree construction revealed three major groupings (clades) of haplotypes that differed in geographic distribution. Divergence estimates between the basal clade, comprised of haplotypes primarily from the Brazos River in east Texas, and the remaining two clades, place C. lutrensis in the western Gulf Coastal Plain prior to Pleistocene glaciation. Nucleotide sequence divergence between the second clade, comprised of haplotypes from the Trinity and Calcasieu rivers in east Texas and southwestern Louisiana, respectively, and the third clade (comprised primarily of haplotypes from localities north of Texas and affected directly by Pleistocene glaciation), suggest that C. lutrensis colonized gladated regions to the north during the mid- to late Pleistocene. This hypothesis is supported by levels of intrapopulational nucleotide diversity in geographic localities outside of Texas and by geological evidence. Despite marked geographic variation in morphometries, meristics, and nuptial coloration, mtDNA variation in glaciated regions was not geographically structured, and subspecies of C. lutrensis were not identifiable by phylogenetic analysis of mtDNA.  相似文献   

18.
1. The white-clawed crayfish Austropotamobius pallipes has a widespread distribution in Europe, but since the last century its distribution has been severely affected by a combination of factors, particularly the disease crayfish plague, introduced by foreign crayfish species. At present A. pallipes is considered as vulnerable and endangered and measures are being taken in a number of countries to conserve it.
2. The application of genetics to conservation is of practical value particularly where restocking is being considered. This study assesses levels of genetic differentiation from an analysis of mitochondrial DNA (mtDNA) variation by restriction fragment length polymorphism of four populations sampled on a European scale. Six different composite haplotypes were detected among sixty-four crayfish representing the four populations. mtDNA nucleon diversity values within species ranged from 0.63% to 12.35%. A close genetic similarity was found between British and French populations of A. pallipes .
3. Results show that mtDNA can be as a suitable diagnostic marker for measuring genetic diversity between crayfish populations and that such information is of use in planning crayfish conservation strategies.  相似文献   

19.
A detailed survey of mitochondrial and chloroplast diversity in eight populations of Silene vulgaris from Central Europe was conducted for comparison with previously published data on diversity from S. vulgaris populations in the introduced range. Mitochondrial DNA (mtDNA) variation around the coxI gene was assessed with Southern blotting/restriction fragment length polymorphism methods. Chloroplast variation was assessed by sequencing the intergenic spacer separating the trnH and psbA genes. Thirty mtDNA haplotypes and 24 chloroplast DNA (cpDNA) haplotypes were found within 86 individuals. The overall genetic diversity h (0.941 for mitochondrial, and 0.893 for chloroplast markers) and within-population diversity were higher than reported in previous population studies of S. vulgaris in the USA and Europe. The frequency of private alleles was surprisingly high - more than 90% for both kinds of markers. Most of our populations were large and located in relatively undisturbed meadows, whereas surveys in Virginia consisted of smaller roadside populations. The slow rate of population turnover in European populations is discussed as a factor responsible for the relatively high diversity of S. vulgaris in undisturbed areas of its native range. Association between mtDNA and cpDNA haplotypes was also demonstrated. Finally, gender and mtDNA haplotype were associated in the Alps populations, where females were very rare.  相似文献   

20.
Identification of units within species worthy of separate management consideration is an important area within conservation. Mitochondrial DNA (mtDNA) surveys can potentially contribute to this by identifying phylogenetic and population structure below the species level. The American crocodile (Crocodylus acutus) is broadly distributed throughout the Neotropics. Its numbers have been reduced severely with the species threatened throughout much of its distribution. In Colombia, the release of individuals from commercial captive populations has emerged as a possible conservation strategy that could contribute to species recovery. However, no studies have addressed levels of genetic differentiation or diversity within C. acutus in Colombia, thus complicating conservation and management decisions. Here, sequence variation was studied in mtDNA cytochrome b and cytochrome oxidase I gene sequences in three Colombian captive populations of C. acutus. Two distinct lineages were identified: C. acutus‐I, corresponding to haplotypes from Colombia and closely related Central American haplotypes; and C. acutus‐II, corresponding to all remaining haplotypes from Colombia. Comparison with findings from other studies indicates the presence of a single “northern” lineage (corresponding to C. acutus‐I) distributed from North America (southern Florida), through Central America and into northern South America. The absence of C. acutus‐II haplotypes from North and Central America indicates that the C. acutus‐II lineage probably represents a separate South American lineage. There appears to be sufficient divergence between lineages to suggest that they could represent two distinct evolutionary units. We suggest that this differentiation needs to be recognized for conservation purposes because it clearly contributes to the overall genetic diversity of the species. All Colombian captive populations included in this study contained a mixture of representatives of both lineages. As such, we recommend against the use of captive‐bred individuals for conservation strategies until further genetic information is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号