首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diabetic cardiomyopathy is characterized by impaired ventricular contraction and altered function of insulin-like growth factor I (IGF-I), a key factor for cardiac growth and function. Endogenous IGF-I has been shown to alleviate diabetic cardiomyopathy. This study was designed to evaluate exogenous IGF-I treatment on the development of diabetic cardiomyopathy. Adult rats were divided into four groups: control, control + IGF-I, diabetic, and diabetic + IGF-I. Streptozotocin (STZ; 55 mg/kg) was used to induce experimental diabetes immediately followed by a 7-wk IGF-I (3 mg. kg(-1). day(-1) ip) treatment. Mechanical properties were assessed in ventricular myocytes including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)) and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) transients were evaluated as Ca(2+)-induced Ca(2+) release and Ca(2+) clearing constant. Levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), phospholamban (PLB), and glucose transporter (GLUT4) were assessed by Western blot. STZ caused significant weight loss and elevated blood glucose, demonstrating the diabetic status. The diabetic state is associated with reduced serum IGF-I levels, which were restored by IGF-I treatment. Diabetic myocytes showed reduced PS and +/-dL/dt as well as prolonged TPS, TR(90), and intracellular Ca(2+) clearing compared with control. IGF-I treatment prevented the diabetes-induced abnormalities in PS, +/-dL/dt, TR(90), and Ca(2+) clearing but not TPS. The levels of SERCA and GLUT4, but not PLB, were significantly reduced in diabetic hearts compared with controls. IGF-I treatment restored the diabetes-induced decline in SERCA, whereas it had no effect on GLUT4 and PLB levels. These results suggest that exogenous IGF-I treatment may ameliorate contractile disturbances in cardiomyocytes from diabetic animals and could provide therapeutic potential in the treatment of diabetic cardiomyopathy.  相似文献   

2.
The contractile hyporesponsiveness of the streptozotocin diabetic rat heart in vitro to β-adrenergic agonists is eliminated when the heart is perfused with NG-nitro-l-arginine methyl ester (l-NAME), a non-selective inhibitor of nitric oxide synthase (NOS). The following study evaluated the hypothesis that an increased production of NO/cGMP within the diabetic myocyte inhibits the β-adrenergic-stimulated increase in calcium current and contractile response. Male Sprague-Dawley rats were given an intravenous injection of streptozotocin (60 mg/kg). After 8 weeks, L-type calcium currents were recorded in ventricular myocytes using the whole cell voltage-clamp method. Shortening of isolated myocytes was determined using a video edge detection system. cAMP and cGMP were measured using radioimmunoassay. Nitric oxide production was determined using the Griess assay kit. Basal cGMP levels and nitric oxide production were elevated in diabetic myocytes. Shortening of the diabetic myocytes in response to isoproterenol (1 μM) was markedly diminished. However, there was no detectable difference in the isoproterenol-stimulated L-type calcium current or cAMP levels between control and diabetic myocytes. Acute superfusion of the diabetic myocyte with l-NAME (1 mM) decreased basal cGMP and markedly enhanced the shortening response to isoproterenol but did not alter isoproterenol-stimulated calcium current. These data suggest that increased production of NO/cGMP within the diabetic myocyte suppressed β-adrenergic stimulated shortening of the myocyte. However, NO/cGMP apparently does not suppress shortening of the myocyte by inhibition of the β-stimulated calcium current.  相似文献   

3.
4.
The potential of plasma to stimulate differentiation and lipid filling of adipose precursors in primary culture was investigated in the groups of genetically obese Zucker rats (fafa) and their lean littermates (FaFa). The effect of age, feeding status and possible role of growth hormone in the process of adipogenesis was also studied. Differences in lipid-filling activity of the tested plasma samples were much more dependent on age than the genotype of plasma donors were. The plasma taken from the oldest (20-week-old) rats stimulated the accumulation of triglycerides in the cells to significantly higher levels than the plasma from other rats. The influence of the feeding status on the lipid-filling activity of plasma was not significant. The differentiation potential of plasma in terms of the stimulation of glycerophosphate dehydrogenase activity measured in adipocyte precursors was 30-50% higher when the culture medium contained plasma from obese rats. Furthermore, glycerophosphate dehydrogenase activity in the growing cells declined with age and tended to be higher in the presence of plasma from fed rats. It was the growth hormone that was in a considerable degree responsible for the differentiation potential of Zucker rat plasma. This effect of growth hormone seemed to be less dependent on fafa genotype. It is, therefore, suggested that in addition to growth hormone, other factors in the plasma of genetically obese Zucker rats might be important in the development of obesity in this rat strain.  相似文献   

5.
Conditioned taste aversion to threshold and suprathreshold concentrationsof sodium chloride, sucrose, and other sweeteners was measuredin obese and lean female Zucker rats. In the first experiment0.1M sodium chloride, 0.1M sucrose, or water was paired witha constant dosage of apomorphine hydrochloride (6.72 mg IP foreach rat). The magnitude of conditioned aversion to sucrose(0.1M and 0.316M) and sodium chloride (0.1M and 0.316M) followingthe initial conditioning trial was similar for obese and leanrats. However, repeated cycles of conditioning and extinctiontrials resulted in decreased sucrose intakes for obese ratsand increased sucrose intakes for lean rats. No changes in intakeoccurred with sodium chloride. In the second experiment 0.1M sucrose or water was paired withdoses of apomorphine hydrochloride based on each rat's bodyweight (30 mg/kg IP). The magnitude of aversion to sucrose (0.01M,0.0316M, 0.1M, 0.316M) and other sweetners (0.75M glucose, 0.1Msucrose, 0.001M sodium saccharin, and 0.025M sodium cyclamate)were similar for obese and lean rats. These data suggest thatrepeated testing with sucrose, rather than differences in sensorytaste factors, contributes to the previous reports of decreasedintake and sweet preference of obese rats.  相似文献   

6.

Background

Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat.

Methods

Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique.

Results

Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W.

Conclusions

In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.  相似文献   

7.
Obese Zucker rats (OZR) are mildly hypertensive with an apparently elevated sympathetic vasomotor tone compared with lean Zucker rats (LZR). Studies have also suggested enhanced adrenergic pressor reactivity in OZR but assumed comparable baroreflexes, or blood volume-to-body weight ratio, to LZR. In 15-wk-old OZR and LZR, we measured plasma volume and vascular reactivity to norepinephrine (NE) and phenylephrine (PE) with doses evaluated by body weight and plasma volume. Plasma volume measured by dye dilution (Evans blue; 200 microl of 0.5%) showed that OZR had comparable blood volumes to LZR but lower blood volume-to-body weight ratio (3.4 +/- 0.2 ml/100 g) than LZR (5.7 +/- 0.2 ml/100 g, P < 0.05). Ganglionic blockade (mecamylamine, 4 mg/kg) in isoflurane-anesthetized rats produced larger decreases in arterial pressure in OZR compared with LZR (52 +/- 2 vs. 46 +/- 2 mmHg). Pressor responses to NE (0.01-10 microg/kg) were exaggerated with doses analyzed by body weight but not analyzed by drug quantity. Pressor responses to PE (1-24 microg/kg) showed no difference with doses analyzed by body weight, but, analyzed by drug quantity, OZR showed a slight decrease in pressor reactivity. PE-induced increases in vascular resistance were exaggerated in the hindlimb circulation of OZR, normal in the renal circulation, and attenuated in the mesenteric circulation. The timing of the peak pressor response to PE corresponded with the increase in mesenteric vascular resistance, followed by rises in hindlimb and renal resistance. These data suggest that systemic adrenergic pressor reactivity is not enhanced in OZR, despite exaggerated vascular reactivity in the hindlimb of the OZR.  相似文献   

8.
Recent reports have suggested that the obesity and hyperphagia of the genetically obese Zucker rat may be related to defective insulin action or binding in the hypothalamus. We used quantitative autoradiography to determine if insulin binding is altered in specific hypothalamic nuclei associated with food intake. Insulin binding was measured in the arcuate (ARC), dorsomedial (DMN), and ventromedial (VMN) hypothalamic nuclei of 3–4-month-old lean (Fa/Fa) and genetically obese (fa/fa) Zucker rats. A consistently reproducible 15% increase in the total specific binding of 0.1 nM [125I]-insulin was found in the ARC of the obese genotype. A slight increase in insulin binding in the DMN was also found. No difference in specific insulin binding was found between genotypes in the VMN. Nonlinear least squares analysis of competitive binding studies showed that the Kd of the ARC insulin binding site was 33% higher in the lean rats than in the obese rats, indicating an increased affinity for insulin. No difference in site number (Bmax) was found in the ARC, DMN or VMN, and no evidence was found for reduced insulin binding in the hypothalamus of the obese (fa/fa) genotype. The results suggest that hyperphagia and obesity of the obese (fa/fa) Zucker rat genotype may be associated with increased insulin binding in the arcuate nucleus.  相似文献   

9.
In heart of genetically obese (fa/fa) 12-week-old Zucker rats, ventricle contractility (4 mM KCl medium), amplitude and duration of slow action potentials (14 mM KCl medium) were less increased by isoprenaline than in heart of non obese (Fa/fa) rats. This difference could be related to a lower reactivity of beta-adrenoceptors in obese rat heart.  相似文献   

10.
In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals.  相似文献   

11.
Changes in the ambient force environment alter the regulation of adiposity, food intake and energy expenditure (i.e., energy balance). Lean (Fa/Fa) and obese (fa/fa) male Zucker rats were exposed to 2G (twice Earth's normal gravity) for eight weeks via centrifugation to test the hypothesis that the Fa/Fa rats recover to a greater degree from the effects of an increased ambient force environment on body mass and food intake, than do the fa/fa rats which have a dysfunctional leptin regulatory system. The rats (lean and obese exposed to either 1G or 2G) were individually housed in standard vivarium cages with food and water provided ad libitum. The acute response to 2G included a transient hypophagia accompanied by decreased body mass, followed by recovery of feeding to new steady-states. In the lean rats, body mass-independent food intake had returned to 1G control levels six weeks after the onset of centrifugation, and body mass increased towards that of the 1G rats. In contrast, food intake and body mass of the 2G obese rats plateaued at a level lower than that of the 1G controls. Although percent carcass fat was reduced more in the 2G leans vs. 2G obese rats, the latter lost significantly more grams of fat than did the leans. Our data suggest that with respect to food intake and body mass, the lean rats recover from the initial effects of 2G exposure to a greater degree than do the fatty rats, a difference that likely reflects the functionality of the leptin regulatory system in the leans.  相似文献   

12.
To determine the time onset of the growth hormone (GH) alteration in the genetically obese rat, we studied the in vivo and in vitro rat growth hormone releasing factor (rGRF(1-29)NH2)-induced GH secretion in 6- and 8-week-old lean and obese male Zucker rats. Under sodium pentobarbital anesthesia, rGRF(1-29)NH2 (GRF) was injected intravenously at two doses: 0.8 and 4.0 micrograms/kg b.w. Basal serum GH concentrations were similar in lean and obese age-matched animals. The GH response to both GRF doses tested was unchanged in 6-week-old obese rats as compared to their lean litter mates. In contrast, a significant decrease of the GH secretion in response to 4.0 micrograms/kg b.w. GRF was observed in the 8-week-old obese rats. The effect of GRF (1.56, 6.25 and 12.5 pM) was further studied in vitro, in a perifusion system of freshly dispersed anterior pituitary cells of lean and obese Zucker rats. Basal GH release was similar in the 6-week-old animal group. In contrast, it was significantly decreased in 8-week-old obese rats as compared to their lean litter mates. Stimulated GH response to 1.56 and 6.25 pM GRF was significantly greater in the 6-week-old obese group than in the age-matched control group. In contrast, the GH response to all GRF concentrations tested was significantly decreased in the 8-week-old obese rats as compared to their respective lean siblings. In 8-week-old obese rats, a decrease of GH pituitary content and an increase of hypothalamic somatostatin (SRIF) concentration were observed. Insulin and free fatty acid serum were significantly increased in 8-week-old obese rats. In contrast, lower insulin-like growth factor I serum levels were observed in the obese animals as compared to their lean litter mates. Finally, to further clarify the role of the periphery in the inhibition of GH secretion observed in the 8-week-old fatty rats, we exposed cultured pituitary cells of 8-week-old lean animals to 17% serum of their obese litter mates. A significant decrease of GRF-stimulated GH secretion of lean rat pituitary cells exposed to the obese serum was noted (P less than 0.05). This study demonstrates that, in the obese Zucker rat, an alteration of the GH response to GRF is evident by the 8th week of life. This defective GH secretion could be related to peripheral and central abnormalities.  相似文献   

13.
Ghrelin is a new orexigenic and adipogenic peptide primarily produced by the stomach and the hypothalamus. In the present experiment, we determined the circulating ghrelin levels in 60-week old fa/fa Zucker rats with a well-established obesity (n = 12) and in their lean (FA/FA) counterparts (n = 12). We also tested the feeding response of both groups to intra-peritoneal (I.P.) injection of ghrelin agonist and antagonist. Obese rats ate significantly more than the lean rats (21.7 +/- 1.1 vs. 18.3 +/- 0.3 g/day; p < 0.01). Their plasma ghrelin concentration was 35% higher than that in the lean homozygous rats (p < 0.025). GHRP-6 (1 mg/kg I.P, a GHS-R agonist) stimulated food intake in lean but not in obese rats (p < 0.01), whereas [D-Lys)]-GHRP-6 (12 mg/kg I.P., a GHS-R antagonist) decreased food intake in both groups (p < 0.0001). These results indicate that the obese Zucker rat is characterized by an increase in plasma ghrelin concentrations and by an attenuated response to a GHS-R agonist. They support a role for ghrelin in the development of obesity in the absence of leptin signaling.  相似文献   

14.
Genetically obese Zucker rats have abnormally low brain insulin content   总被引:2,自引:0,他引:2  
The concentration of immunoreactive insulin (IRI) extracted from the olfactory bulb, hypothalamus, hippocampus, cerebral cortex, amygdala, midbrain, and hindbrain was significantly lower in obese (fa/fa) and heterozygous (Fa/fa) Zucker rats in comparison to lean (Fa/Fa) Zucker rats. This deficit in brain IRI content was most severe in the hypothalamus and olfactory bulb and was independent of severe obesity since the marked reduction of brain IRI content was also found in heterozygous rats which possessed only one copy of the fa allele. These results demonstrate that in the 2-3 month-old female Zucker rat, the fa allele is associated with defective regulation of insulin in the brain.  相似文献   

15.
The present study was conducted to determine the effect of chronic administration of the long-acting beta(2)-adrenergic agonist clenbuterol on rats that are genetically prone to insulin resistance and impaired glucose tolerance. Obese Zucker rats (fa/fa) were given 1 mg/kg of clenbuterol by oral intubation daily for 5 wk. Controls received an equivalent volume of water according to the same schedule. At the end of the treatment, rats were catheterized for euglycemic-hyperinsulinemic (15 mU insulin. kg(-1). min(-1)) clamping. Clenbuterol did not change body weight compared with the control group but caused a redistribution of body weight: leg muscle weights increased, and abdominal fat weight decreased. The glucose infusion rate needed to maintain euglycemia and the rate of glucose disappearance were greater in the clenbuterol-treated rats. Furthermore, plasma insulin levels were decreased, and the rate of glucose uptake into hindlimb muscles and abdominal fat was increased in the clenbuterol-treated rats. This increased rate of glucose uptake was accompanied by a parallel increase in the rate of glycogen synthesis. The increase in muscle glucose uptake could not be ascribed to an increase in the glucose transport protein GLUT-4 in clenbuterol-treated rats. We conclude that chronic clenbuterol treatment reduces the insulin resistance of the obese Zucker rat by increasing insulin-stimulated muscle and adipose tissue glucose uptake. The improvements noted may be related to the repartitioning of body weight between tissues.  相似文献   

16.
Tzeng TF  Lo CY  Cheng JT  Liu IM 《Life sciences》2007,80(16):1508-1516
In the current study we investigated the effect of mu-opioid receptor activation on insulin sensitivity. In obese Zucker rats, an intravenous injection of loperamide (18 microg/kg, three times daily for 3 days) decreased plasma glucose levels and the glucose-insulin index. Both effects of loperamide were subsequently inhibited by the administration of 10 microg/kg of naloxone or 10 microg/kg of naloxonazine, doses sufficient to block mu-opioid receptors. Other metabolic defects characteristic of obese Zucker rats, such as defects in insulin signaling, the decreased expression of insulin receptor substrate (IRS)-1, the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3 kinase), and the glucose transporter subtype 4 (GLUT 4), and the reduction of phosphorylation in IRS-1 or Akt serine, were also studied. These defects were all reversed by loperamide treatment in a dose which overcame mu-opioid receptor blockade. Moreover, loss of tolbutamide-induced plasma glucose lowering action (10 mg/kg) in wild-type mice given a fructose-rich diet was markedly delayed by repeated treatment with loperamide; however, this delay induced by loperamide did not occur in mu-opioid receptor knockout mice. These results indicate an important role of peripheral mu-opioid receptors in the loperamide-induced improvement of insulin sensitivity. Our results suggest that activation of peripheral mu-opioid receptors can ameliorate insulin resistance in animals, and provide a new target for therapy of insulin resistance.  相似文献   

17.
Summary— Genetically obese Zucker (fa/fa) rats were used as an experimental model to study the effects of hypolipidemic agents on peroxisome proliferation; comparison was made with Zucker lean phenotype (Fa/?) and Sprague-Dawley strain/phenotype. The pharmacokinetics of a single administration of ciprofibrate (1 or 3 mg/kg), appeared to be similar in all strains/phenotypes. After a 2-week oral administration at the same dosages, there were dosage-related increases in hepatocellular peroxisomal yield and in the hepatic enzymes' cyanide-insensitive acyl-CoA oxidase and catalase. The peroxisomal yield was less increased in Zucker than in Sprague-Dawley rats, while the enzyme activities were similarly increased. Although the absolute specific activity of microsomal ω-lauryl hydroxylase (cytochrome P4504A1) was lower in Zucker rats, it was increased more in this strain than in Sprague-Dawley rats in response to drug exposure. The hypolipidemic effect (cholesterol and triglyceride reduction) was more pronounced in Zucker obese rats. Based on biochemical and morphological results, no major differences between strains/phenotypes in terms of peroxisome proliferation were observed following a 2-week administration of ciprofibrate.  相似文献   

18.
The release of somatostatin from the pancreas and stomach following the ingestion of a meal and its increase in the peripheral circulation elicits an attenuation of postprandial hormone secretion such as insulin, pancreatic polypeptide and gastrin and retards the rate at which nutrients enter the circulation. Reduced tissue somatostatin content and/or an attenuated somatostatin release is associated with hyperinsulinism and obesity in certain animal models. In the obese Zucker rat, however, tissue somatostatin levels are increased and therefore the present study was designed to determine the effect of synthetic somatostatin on basal and postprandial arterial insulin levels in obese and lean Zucker rats. Synthetic somatostatin was infused at doses of 0.25, 0.5, 1 and 5 ng/kg X min before and after the intragastric instillation of a liver extract/sucrose test meal. In the obese rats somatostatin at a dose of 5 ng/kg X min reduced basal plasma insulin levels significantly, whereas no effect of somatostatin was observed on basal insulin levels in the lean animals at all doses employed. The integrated postprandial insulin response was reduced during 0.25, 0.5, 1 and 5 ng/kg X min somatostatin in the obese animals, whereas only 0.5 ng/kg X min and higher doses had an inhibitory effect in the lean rats. The degree of inhibition in relation to the postprandial insulin response during saline infusions was 35-230% in the obese and 30-100% in the lean Zucker rats within the range of somatostatin infusions employed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Static exercise causes activation of the sympathetic nervous system, which results in increased blood pressure (BP) and renal vascular resistance (RVR). The question arises as to whether renal vasoconstriction that occurs during static exercise is due to sympathetic activation and/or related to a pressure-dependent renal autoregulatory mechanism. To address this issue, we monitored renal blood flow velocity (RBV) responses to two different handgrip (HG) exercise paradigms in 7 kidney transplant recipients (RTX) and 11 age-matched healthy control subjects. Transplanted kidneys are functionally denervated. Beat-by-beat analyses of changes in RBV (observed via duplex ultrasound), BP, and heart rate were performed during HG exercise in all subjects. An index of RVR was calculated as BP/RBV. In protocol 1, fatiguing HG exercise (40% of maximum voluntary contraction) led to significant increases in RVR in both groups. However, at the end of exercise, RVR was more than fourfold higher in control subjects than in the RTX group (88 vs. 20% increase over baseline; interaction, P < 0.001). In protocol 2, short bouts of HG exercise (15 s) led to significant increases in RVR at higher workloads (50 and 70% of maximum voluntary contraction) in the control subjects (P < 0.001). RVR did not increase in the RTX group. In conclusion, we observed grossly attenuated renal vasoconstrictor responses to exercise in RTX subjects, in whom transplanted kidneys were considered functionally denervated. Our results suggest that renal vasoconstrictor responses to exercise in conscious humans are mainly dependent on activation of a neural mechanism.  相似文献   

20.
A diurnal hyperphagia is certainly the main factor of adiposity in the genetically obese Zucker fa/fa rat. In a previous experiment it was observed that cold-acclimatization suppressed hyperphagia and stopped the increase in obesity. In this work, the chronology of modification in the feeding pattern is studied during the first month of cold exposure (10 degrees C). The main cold-induced modifications are observed after 2 weeks of cold exposure. Possibly the decrease in metabolic efficiency of food could parallel the cold-induced enhancement of energetic capacity of brown adipose tissue which has been described elsewhere. This tissue could play a role in the obesity of the Zucker rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号