首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mode of tryptophan residue orientation in myosin and action myofilaments of the muscle fiber was studied using polarized ultraviolet (UV) fluorescent microscopy of the muscle fiber was studied using polarized ultraviolet (UV) fluorescent microscopy technique. During an elective extraction of proteine from thick and thin myofillaments changes in UV fluorescence anisotropy of muscle fibers were detected, thus suggesting that tryptophanil residues in myosin may be oriented by their own short axes mostly parallel, but in actin--perpendicular to the muscle fiber axis. The use of acrylamide, an UV fluorescence quencher, is proposed for the control of extraction electivity of proteins from muscle fibers.  相似文献   

2.
Vishniakov GN  Levin GG 《Biofizika》2002,47(4):711-715
An optical method for measuring the birefringence of muscle fibers was developed, which is realized on an automated Linnick interferometer microscope equipped with a laser. It was shown that the method has some advantages over the methods based on measurements of the intensity of light passing through a crossed polarizer, an analyzer, and a fiber (light polarized microscopy). The method involves direct phase measurements of optical path length at the parallel and perpendicular orientations of the polarization plane of probing radiation. The phase image is reconstructed automatically from interferograms with the use of the four-frame phase-shifting algorithm. The phase images of one and the same central part of the fiber at different orientations of the polarization plane represent two-dimensional numerical maps of the optical path length. The subtraction of these images gives a two-dimensional map of the phase shift, which includes information about the birefringence of the fiber. A formula for birefringence measurements was deduced, which has a certain advantage in comparison to that used earlier in that it does not take into account the thickness of a fiber that depends on the measurement point. The birefringence is normalized to a value of the half sum of phases, which are measured separately in the course of the experiment.  相似文献   

3.
Single muscle fibers were isolated from soleus and extensor digitorum longus muscle of adult rats. The muscle fiber type of single fibers was determined physiologically by the skinned fiber method according to the sensitivity to strontium (Sr) ions. The fiber type of single fibers was contrasted to the pattern of myosin light chains analyzed by one and two dimensional gel-electrophoreses. All the type 2 fibers isolated from soleus muscle contained both fast and slow types of myosin light chains.  相似文献   

4.
5.
This paper describes the design, evaluation, and application of a new system for quantifying two-dimensional collagen fiber orientation in soft tissue. Series of transmitted polarized light images were collected using a custom-designed macroscope. Combined analysis of pixel brightness, and hue from images collected with a compensator plate, permitted the assignment of each pixel into the appropriate orientation band. Experiments were performed to quantify the linearity and noise of the system. Validation was performed on a specimen composed of strain-birefringent plastic strips at various orientations. Preliminary collagen fiber orientation data is presented from a tendon specimen. This study demonstrates the utility of this approach for studying collagen fiber orientation across large areas.  相似文献   

6.
Myosin form birefringence has been studied in cryostat sections of left ventricular myocardium from the dog and human. The muscle in such sections has been shown to demonstrate the sliding filament phenomenon. The sarcomere length of canine myocardium agreed with that found in comparable electron micrographs. Unexpectedly, it was found that glycerol, normally used as an inert and optically ideal mountant, caused profound change in myosin birefringence. This apparently invalidates results obtained with this mountant. The absolute birefringence found in these sections, whether mounted in glycerol or in an ATP-calcium buffer, corresponded to values found by other workers with skeletal muscle and isolated myosin. However, the birefringent properties (optical path difference: o.p.d.) of well functioning muscle was found to be low, the o.p.d. increasing when exposed to ATP and calcium. Poorly functioning muscle could be distinguished from well functioning muscle on the basis of its higher 'in air' o.p.d. This difference correlated well with physiological assessments of myocardial function or with clinical assessments of cardiac failure. Evidence is presented indicating that changes in apparent birefringence, caused by ATP-calcium or by anoxia, are due to altered orientation of the myosin micelles and can be inhibited by agents that inhibit myosin ATPase activity.  相似文献   

7.
Rovner AS  Fagnant PM  Trybus KM 《Biochemistry》2006,45(16):5280-5289
Regulatory light chain (RLC) phosphorylation activates smooth and non-muscle myosin II, but it has not been established if phosphorylation of one head turns on the whole molecule. Baculovirus expression and affinity chromatography were used to isolate heavy meromyosin (HMM) containing one phosphorylated and one dephosphorylated RLC (1-P HMM). Motility and steady-state ATPase assays indicated that 1-P HMM is nearly as active as HMM with two phosphorylated heads (2-P HMM). Single-turnover experiments further showed that both the dephosphorylated and phosphorylated heads of 1-P HMM can be activated by actin. Singly phosphorylated full-length myosin was also an active species with two cycling heads. Our results suggest that phosphorylation of one RLC abolishes the asymmetric inhibited state formed by dephosphorylated myosin [Liu, J., et al. (2003) J. Mol. Biol. 329, 963-972], allowing activation of both the phosphorylated and dephosphorylated heads. These findings help explain how smooth muscles are able to generate high levels of stress with low phosphorylation levels.  相似文献   

8.
9.
K Ajtai  T P Burghardt 《Biochemistry》1989,28(5):2204-2210
We describe a protocol for the selective covalent labeling of the sulfhydryl 2 (SH2) on the myosin cross-bridge in glycerinated muscle fibers using the sulfhydryl-selective label 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole (IANBD). The protocol promotes the specificity of IANBD by using the ability to protect sulfhydryl 1 (SH1) from modification by binding the cross-bridge to the actin filament and using cross-bridge-bound MgADP to promote the accessibility of SH2. We determined the specificity of the probe using fluorescence gel scanning of fiber-extracted proteins to isolate the probe on myosin subfragment 1 (S1), limited proteolysis of the purified S1 to isolate the probe on the 20-kilodalton fragment of S1, and titration of the free SH1's on purified S1 using the radiolabeled SH1-specific reagent [14C]iodoacetamide or enzymatic activity measurements. We estimated the distribution of the IANBD on the fiber proteins to be approximately 77% on SH2, approximately 5% on SH1, and approximately 18% on troponin I. We characterized the angular distribution of the IANBD on cross-bridges in fibers when the fibers are in rigor, in relaxation, in the presence of MgADP, and in isometric contraction using wavelength-dependent fluorescence polarization [Ajtai, K., & Burghardt, T. P. (1987) Biochemistry 26, 4517-4523]. With wavelength-dependent fluorescence polarization we use the ability to rotate the transition dipole in the molecular frame using excitation wavelength variation to investigate the three angular degrees of freedom of the cross-bridge.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Muscle contraction is generally thought to involve changes in the orientation of myosin crossbridges during their ATP-driven cyclical interaction with actin. We have investigated crossbridge orientation in equilibrium states of the crossbridge cycle in demembranated fibres of frog and rabbit muscle, using a novel combination of techniques: birefringence and X-ray diffraction. Muscle birefringence is sensitive to both crossbridge orientation and the transverse spacing of the contractile filament lattice. The latter was determined from the equatorial X-ray diffraction pattern, allowing accurate characterization of the orientation component of birefringence changes. We found that this component decreased when relaxed muscle fibres were put into rigor at rest length, and when either the ionic strength or temperature of relaxed fibres was lowered. In each case the birefringence decrease was accompanied by an increase in the intensity of the (1,1) equatorial X-ray reflection relative to that of the (1,0) reflection. When fibres that had been stretched largely to eliminate overlap between actin- and myosin-containing filaments were put into rigor, there was no change in the orientation component of the birefringence. When isolated myosin subfragment-1 was bound to these rigor fibres, the orientation component of the birefringence increased. The birefringence changes at rest length are likely to be due to changes in the orientation of myosin crossbridges, and in particular of the globular head region of the myosin molecules. In relaxed fibres from rabbit muscle, at 100 mM ionic strength, 15 degrees C, the long axis of the heads appears to be relatively well aligned with the filament axis. When fibres are put into rigor, or the temperature or ionic strength is lowered, the degree of alignment decreases and there is a transfer of crossbridge mass towards the actin-containing filaments.  相似文献   

11.
H M Jones  R J Baskin    Y Yeh 《Biophysical journal》1991,60(5):1217-1228
The state of optical polarization of He-Ne laser light diffracted by single skinned frog skeletal muscle fibers has been determined after decoration of the thin filaments of rigor fibers with exogenous S-1. Light on the first diffraction order was analyzed using optical ellipsometry for changes occurring in total birefringence (delta nT) and total differential field ratio (rT) and the experimental results compared with theoretical predictions. Fibers were examined with SDS-gel electrophoresis and electron microscopy as independent assays of S-1 binding. The binding of S-1 to the thin filaments caused a significant increase in rT and a small but significant decrease in delta nT. Release of bound exogenous S-1 with magnesium pyrophosphate demonstrated that the effect of S-1 on the optical parameters was reversible and both electrophoresis and electron microscopy demonstrated the presence of S-1 specifically bound to the thin filaments. Model simulations based on the theory of Yeh, Y., and R. Baskin (1988. Biophys. J. 54:205-218) showed that the values of delta nT and rT were sensitive to the axial bonding angle of exogenous S-1 as well as to the volume fraction of added S-1. Analysis of the data in light of the model showed that an average axial S-1 binding angle of 68 degrees +/- 7 degrees best fit the data.  相似文献   

12.
The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.  相似文献   

13.
The regulatory light chain (RLC) from chicken gizzard myosin was covalently modified on cysteine 108 with either the 5- or 6-isomer of iodoacetamidotetramethylrhodamine (IATR). Labeled RLCs were purified by fast protein liquid chromatography and characterized by reverse-phase high-performance liquid chromatography (HPLC), tryptic digestion, and electrospray mass spectrometry. Labeled RLCs were exchanged into the native myosin heads of single skinned fibers from rabbit psoas muscle, and the ATR dipole orientations were determined by fluorescence polarization. The 5- and 6-ATR dipoles had distinct orientations, and model orientational distributions suggest that they are more than 20 degrees apart in rigor. In the rigor-to-relaxed transition (sarcomere length 2.4 microm, 10 degrees C), the 5-ATR dipole became more perpendicular to the fiber axis, but the 6-ATR dipole became more parallel. This orientation change was absent at sarcomere length 4.0 microm, where overlap between myosin and actin filaments is abolished. When the temperature of relaxed fibers was raised to 30 degrees C, the 6-ATR dipoles became more parallel to the fiber axis and less ordered; when ionic strength was lowered from 160 mM to 20 mM (5 degrees C), the 6-ATR dipoles became more perpendicular to the fiber axis and more ordered. In active contraction (10 degrees C), the orientational distribution of the probe dipoles was similar but not identical to that in relaxation, and was not a linear combination of the orientational distributions in relaxation and rigor.  相似文献   

14.
At low ionic strength (7-25 mM) Mg2(+)-ATPase of myosin subfragment 1 (S1) isoforms containing alkali light chain A1 [S1(A1)] is activated by actin 1.5-2.5 times as strongly as Mg2(+)-ATPase of S1 isoforms containing alkali light chain A2[S1(A2)]. Data from analytical ultracentrifugation suggest that at low ionic strength in the absence of ATP in solution S1(A1) displays a higher affinity for F-actin than S1(A2). Such a higher affinity of S1(A1) for F-actin was also demonstrated by experiments, in which the interaction of S1 isoforms fluorescently labeled by 1.5-IAEDANS with F-actin of ghost fibers (single glycerinated muscle fibers containing F-actin but devoid of myosin) was studied. Using polarization microfluorimetry, it was shown that the interaction of both S1 isoforms with ghost fiber F-actin induces similar changes in the parameters of polarized tryptophan fluorescence. At the same time the mobility of the fluorescent probe, 1.5-IAEDANS, specifically attached to the SH-group of Cys-374 in the C-terminal region of action is markedly decreased by S1(A1) and is only slightly affected by S1(A2). The data obtained suggest that S1(A1) and S1(A2) interact with the C-terminal region of the actin molecule in different ways, i.e. S1(A1) is attached more firmly than S1(A2). This may be due to the existence of contacts between the alkali light chain of A1 of S1(A1) and the C-terminal region of actin as well as to the absence of such contacts in the case of S1(A2).  相似文献   

15.
16.
A new constitutive model for the biomechanical behaviour of smooth muscle tissue is proposed. The active muscle contraction is accomplished by the relative sliding between actin and myosin filaments, comprising contractile units in the smooth muscle cells. The orientation of the myosin filaments, and thereby the contractile units, are taken to exhibit a statistical dispersion around a preferred direction. The number of activated cross-bridges between the actin and myosin filaments governs the contractile force generated by the muscle and also the contraction speed. A strain-energy function is used to describe the mechanical behaviour of the smooth muscle tissue. Besides the active contractile apparatus, the mechanical model also incorporates a passive elastic part. The constitutive model was compared to histological and isometric tensile test results for smooth muscle tissue from swine carotid artery. In order to be able to predict the active stress at different muscle lengths, a filament dispersion significantly larger than the one observed experimentally was required. Furthermore, a comparison of the predicted active stress for a case of uniaxially oriented myosin filaments and a case of filaments with a dispersion based on the experimental histological data shows that the difference in generated stress is noticeable but limited. Thus, the results suggest that myosin filament dispersion alone cannot explain the increase in active muscle stress with increasing muscle stretch.  相似文献   

17.
We have used electron paramagnetic resonance (EPR) to determine the effects of ADP on the orientational distribution of nitroxide spin labels attached to myosin heads in skinned rabbit psoas muscle fibers. To maximize the specificity of labeling, we spin-labeled isolated myosin heads (subfragment 1) on a single reactive thiol (SH1) and diffused them into unlabeled muscle fibers. To maximize spectral and orientational resolution, we used perdeuterated spin labels, 2H-MSL and 2H-IASL, eliminating superhyperfine broadening and thus narrowing the line widths. Two different spin labels were used, with different orientation relative to the myosin head, to ensure that the results are not affected by unfavorable probe orientation. In rigor, a very narrow three-line spectrum was observed for both spin labels, indicating a narrow orientational distribution, as reported previously (Thomas & Cooke, 1980). ADP induced very slight changes in the spectrum, corresponding to very slight (but significant) changes in the orientational distribution. These changes were quantified by a digital analysis of the spectra, using a two-step simplex fitting procedure (Fajer et al., 1990). First, the magnetic tensor values and line widths were determined by fitting the spectrum of a randomly oriented sample. Then the spectrum of oriented fibers was fit to a model by assuming a Gaussian distribution of the tilt angle (theta) and twist angle (phi) of the nitroxide principal axes relative to the fiber axis. A single-Gaussian distribution resulted in inadequate fits, but a two-component model gave excellent results. ADP induces a small (less than 5 degrees) rotation of the major components for both spin labels, along with a similarly small increase of disorder about the average positions.  相似文献   

18.
19.
A S Khromov 《Biofizika》1988,33(5):881-883
Rigor tension was found to vary significantly with the replacement rate of the relaxing with the rigor solutions. The maximum value of rigor tension (Prig = 130 kN/m2) was obtained under slow (5 microL/sec) replacement of the solutions. The difference in the tensions may reflect variations in the amount of "compliance" taken out from the fibre.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号