首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have performed Southern blot analysis on a large, four-generation kindred with Duchenne muscular dystrophy (DMD). Probes 754 (DXS 84), pERT87-1, pERT87-8, pERT87-15 (DXS164), and pXJ-1.1 did not hybridize to digested genomic DNA of affected males. Obligate-carrier mothers and unaffected brothers showed signals of a single X-chromosome copy intensity, and suspected noncarrier sisters demonstrated either a single band of two-copy intensity or informative polymorphisms. Uniform hybridization was seen with probes C7 (DXS28) and D2 (DXS43), which map distal to the DMD locus, and with OTC, which maps proximally. This deletion was present in six affected individuals and has been transmitted through 3 generations to date. On high-resolution chromosome analysis, a deletion within band Xp21 was consistently observed in one affected male studied and in one of the two X chromosomes in obligate carriers. This large molecular and cytogenetically visible deletion in affected DMD individuals without glycerol kinase deficiency, chronic granulomatous disease, retinitis pigmentosa (RP), or ornithine transcarbamylase deficiency is a very rare finding and should prove useful in specifically cloning additional probes within and flanking the DMD locus.  相似文献   

2.
By cloning the endpoints of a DMD-associated deletion, we have "jumped" 1100 kb from pERT87-1 (DSX164) to a new locus designated J66 (DXS268), mapping distally within the Duchenne muscular dystrophy (DMD) gene. Both J66 and JBir are mapped by field-inversion gel electrophoresis and detect abnormal SfiI fragments in DMD patients and distal DMD-associated X; autosome translocations. Our long-range map extends the physical map of the DMD gene from 800 to 2000 kb (2 Mb) and increases the mapped portion of Xp21 to approximately 8 Mb. The position of the glycerol kinase gene and the adrenal hypoplasia locus are further confined to the region between J66 and the nearest distal probe L1-4. This region spans at least 1.5 Mb. The multiallelic J66 polymorphism has immediate application in the diagnosis of DMD and generally appears to be distal to DMD mutations.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

4.
One of female MZ twins presented with muscular dystrophy. Physical examination, creatine phosphokinase levels, and muscle biopsy were consistent with Duchenne muscular dystrophy (DMD). However, because of her sex she was diagnosed as having limb-girdle muscular dystrophy. With cDNA probes to the DMD gene, a gene deletion was detected in the twins and their mother. The de novo mutation which arose in the mother was shown by novel junction fragments generated by HindIII, PstI, or TaqI when probed with cDNA8. Additional evidence of a large gene deletion was given by novel SfiI junction fragments detected by probes p20, J-Bir, and J-66 on pulsed-field gel electrophoresis (PFGE). Immunoblot analysis of muscle from the affected twin showed dystrophin of normal size but of reduced amount. Immunofluorescent visualization of dystrophin revealed foci of dystrophin-positive fibers adjacent to foci of dystrophin-negative fibers. These data indicate that the affected twin is a manifesting carrier of an abnormal DMD gene, her myopathy being a direct result of underexpression of dystrophin. Cytogenetic analysis revealed normal karyotypes, eliminating the possibility of a translocation affecting DMD gene function. Both linkage analysis and DNA fingerprint analysis revealed that each twin has two different X chromosomes, eliminating the possibility of uniparental disomy as a mechanism for DMD expression. On the basis of methylation differences of the paternal and maternal X chromosomes in these MZ twins, we propose uneven lyonization (X chromosome inactivation) as the underlying mechanism for disease expression in the affected female.  相似文献   

5.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

6.
We report a Turner patient aged 22 years with a 45,X/46,X,del(X)(q23) karyotype. Late replication studies showed preferential inactivation of the deleted X chromosome; FISH studies with a probe for total human telomeres showed hybridisation signal in the telomeres on both the normal and the deleted X chromosomes. Microsatellite analysis in the proposita and her family permitted us to conclude to the maternal origin of the deleted X chromosome, and to detect using the marker DXS1106 (Xq22) a probable meiotic recombination event above the breakage point suggesting that the deletion occurred underneath this point.The mild Turner stigmata may be explained by the 45,X cell line, and the gonadal dysgenesis probably by a partial deletion of the gonadal dysgenesis region Xq13-q23 (excluding Xq22).  相似文献   

7.
During a routine prenatal diagnosis we detected a female fetus with an apparent terminal deletion of an X chromosome with a karyotype 46,X,del(X)(q25); the mother, who later underwent premature ovarian failure, had the same Xq deletion. To further delineate this familial X deletion and to determine whether the deletion was truly terminal or, rather, interstitial (retaining a portion of the terminal Xq28), we used a combination of fluorescence in situ hybridization (FISH) and Southern analyses. RFLP analyses and dosage estimation by densitometry were performed with a panel of nine probes (DXS3, DXS17, DXS11, DXS42, DXS86, DXS144E, DXS105, DXS304, and DXS52) that span the region Xq21 to subtelomeric Xq28. We detected a deletion involving the five probes spanning Xq26-Xq28. FISH with a cosmid probe (CLH 128) that defined Xq28 provided further evidence of a deletion in that region. Analysis with the X chromosome-specific cocktail probes spanning Xpter-qter showed hybridization signal all along the abnormal X, excluding the possibility of a cryptic translocation. However, sequential FISH with the X alpha-satellite probe DXZ1 and a probe for total human telomeres showed the presence of telomeres on both the normal and deleted X chromosomes. From the molecular and FISH analyses we interpret the deletion in this family as 46,X,del(X) (pter-->q26::qter). In light of previous phenotypic-karyotypic correlations, it can be deduced that this region contains a locus responsible for ovarian maintenance.  相似文献   

8.
9.
Ocular albinism of the Nettleship-Falls type (OA1) and X-linked ichthyosis (XI) due to steroid sulfatase (STS) deficiency are cosegregating in three cytogenetically normal half-brothers. The mother has patchy fundal hypopigmentation consistent with random X inactivation in an OA1 carrier. Additional phenotypic abnormalities that have been observed in other STS "deletion syndromes" are not present in this family. STS is entirely deleted on Southern blot in the affected males, but the loci MIC2X, DXS31, DXS143, DXS85, DXS43, DXS9, and DXS41 are not deleted. At least part of DXS278 is retained. Flow cytometric analysis of cultured lymphoblasts from one of the XI/OA1 males and his mother detected a deletion of about 3.5 million bp or about 2% of the X chromosome. Southern blot and RFLP analysis in the XI/OA1 family support the order tel-[STS-OA1-DXS278]-DXS9-DXS41-cen. An unrelated patient with the karyotype 46,X,t(X;Y) (p22;q11) retains the DXS143 locus on the derivative X chromosome but loses DXS278, suggesting that DXS278 is the more distal locus and is close to an XI/OA1 deletion boundary. If a contiguous gene deletion is responsible for the observed XI/OA1 phenotype, it localizes OA1 to the Xp22.3 region.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is the most common hereditary neuromuscular disease. It is inherited as an X-linked recessive trait in which males show clinical manifestations. In some rare cases, the disease can also be manifested in females. The aim of the present study was to determine the molecular alteration in two cases of nonrelated DMD symptomatic carriers with no previous history of DMD. Multiplex PCR is commonly used to search for deletion in the DMD gene of affected males. This method could not be used in females because the normal X chromosome masks the deletion of the mutated one. Therefore, we used a set of seven highly polymorphic dinucleotide (CA)(n) repeat markers that lie within the human dystrophin gene. The deletions were evidenced by hemizygosity of the loci under study. We localized a deletion in the locus 7A (intron 7) on the maternal X chromosome in one case, and a deletion in the region of introns 49 and 50 on the paternal X chromosome in the other. The use of microsatellite genotyping within the DMD gene enables the detection of the mutant allele in female carriers. It is also a useful method to provide DMD families with more accurate genetic counseling.  相似文献   

11.
Summary A family in which an interstitial deletion of the X chromosome, del(X)(q13q21.3), is segregating was ascertained through a boy with cleft lip and palate, agenesis of the corpus callosum, and severe mental retardation. The possible causal relationship to his chromosome abnormality is discussed. Although the deletion occurred within the critical region, the mother showed no signs of gonadal dysgenesis. A phenotypically normal daughter was, as her mother, monosomic for this region of the X, and both showed random inactivation of the X chromosome.Supported in part by grants to E.N. from the Carl Petersen's Foundation (B 995) and the Danish Medical Research Council (512-4276)  相似文献   

12.
A young girl with a clinically moderate form of myotubular myopathy was found to carry a cytogenetically detectable deletion in Xq27-q28. The deletion had occurred de novo on the paternal X chromosome. It encompasses the fragile X (FRAXA) and Hunter syndrome (IDS) loci, and the DXS304 and DXS455 markers, in Xq27.3 and proximal Xq28. Other loci from the proximal half of Xq28 (DXS49, DXS256, DXS258, DXS305, and DXS497) were found intact. As the X-linked myotubular myopathy locus (MTM1) was previously mapped to Xq28 by linkage analysis, the present observation suggested that MTM1 is included in the deletion. However, a significant clinical phenotype is unexpected in a female MTM1 carrier. Analysis of inactive X-specific methylation at the androgen receptor gene showed that the deleted X chromosome was active in ~80% of leukocytes. Such unbalanced inactivation may account for the moderate MTM1 phenotype and for the mental retardation that later developed in the patient. This observation is discussed in relation to the hypothesis that a locus modulating X inactivation may lie in the region. Comparison of this deletion with that carried by a male patient with a severe Hunter syndrome phenotype but no myotubular myopathy, in light of recent linkage data on recombinant MTM1 families, led to a considerable refinement of the position of the MTM1 locus, to a region of ~600 kb, between DXS304 and DXS497.  相似文献   

13.
Summary A de novo interstitial deletion (X)(q27.1q27.3), between the loci DXS 105 and F8, has been found in a mentally retarded female. The deleted X chromosome is preferentially early replicating in fibroblasts, B cells and T cells, suggesting that the missing region plays a role in inactivation of the X chromosome. None of the available DNA probes except DXS 98 maps to the deleted region of about 10000kb. The locus FRAXA is either included in the deletion, or located close to the distal break point.  相似文献   

14.
A recombinant chromosome in a male affected with X-linked congenital stationary night blindness (CSNB1) provides new information on the location of the CSNB1 locus. A four-generation family with five males affected with X-linked CSNB was analyzed with five polymorphic markers for four X-chromosome loci spanning the region OTC (Xp21.1) to DXS255 (Xp11.22). Four of the males inherited the same X chromosome; one male inherited a chromosome that from OTC to DXS7, inclusive, was derived from the normal X chromosome of his unaffected grandfather and that from a location between DXS7 and DXS426 proximally was derived from the chromosome carrying the CSNB1 locus. This recombinant maps the CSNB1 locus in this family to a region on the short arm of the X chromosome proximal to the DXS7 locus.  相似文献   

15.
The study of contiguous gene deletion syndromes by using reverse genetic techniques provides a powerful tool for precisely defining the map location of the genes involved. We have made use of individuals with overlapping deletions producing choroideremia as part of a complex phenotype, to define the boundaries on the X chromosome for this gene, as well as for X-linked mixed deafness with perilymphatic gusher (DFN3). Two patients with deletions and choroideremia are affected by an X-linked mixed conductive/sensorineural deafness; one patient, XL-62, was confirmed at surgery to have DFN3, while the other patient, XL-45, is suspected clinically to have the same disorder. A third choroideremia deletion patient, MBU, has normal hearing. Patient XL-62 has a cytogenetically detectable deletion that was measured to be 7.7% of the X chromosome by dual laser flow cytometry; the other patient, XL-45, has a cytogenetically undetectable deletion that measures only 3.3% of the X chromosome. We have produced a physical map of the X-chromosome region containing choroideremia and DFN3 by using routine Southern blotting, chromosome walking and jumping techniques, and long-range restriction mapping to generate and link anonymous DNA sequences in this region. DXS232 and DXS233 are located within 450 kb of each other on the same SfiI and MluI fragments and share partial SalI fragments of 750 and greater than 1,000 kb but are separated by at least one SalI site. In addition, DXS232, which lies outside the MBU deletion, detects the proximal breakpoint of this deletion. We have isolated two new anonymous DNA sequences by chromosome jumping from DXS233; one of these detects a new SfiI fragment distal to DXS233 in the direction of the choroideremia gene, while the other jump clone is proximal to DXS233 and detects a new polymorphism. These data refine the map around the loci for choroideremia and for mixed deafness with stapes fixation and will provide points from which to isolate candidate gene sequences for these disorders.  相似文献   

16.
Summary We have isolated a random cosmid cX5 (DXS148), which maps into a small Xp21 deletion associated with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CGD), retinitis pigmentosa (RP) and McLeod syndrome. cX5 maps proximally outside several other deletions associated with DMD, glycerol kinase deficiency (GK) and adrenal hypoplasia (AHC). The following order of loci is proposed: centromere-OTC-cX5 (DXS148)-754 (DXS84)-PERT87 (DXS164)/DMD-telomere. A subclone cX5.7, isolated from this cosmid, identifies an MspI RFLP, with a minor allele frequency of 35%. This probe forms an important adjunct to the existing RFLPs for family studies in Duchenne muscular dystrophy.  相似文献   

17.
Germinal mosaicism in Duchenne muscular dystrophy   总被引:18,自引:4,他引:14  
Summary We have identified a Duchenne muscular dystrophy (DMD) pedigree where the disease is associated with a molecular deletion within the DMD locus. We have examined the meiotic segregation products of the common female ancestor using marker restriction fragment length polymorphisms (RFLPs) detected by probes that lie within this deletion. These studies show that this female has transmitted three distinet types of X chromosome to her offspring. This observation may be explained by postulating that the mutation arose as a postzygotic deletion within this common ancestor, who was consequently germinally mosaic.  相似文献   

18.
We report a family ascertained for molecular diagnosis of muscular dystrophy in a young girl, in which preferential activation (> or = 95% of cells) of the paternal X chromosome was seen in both the proband and her mother. To determine the molecular basis for skewed X inactivation, we studied X-inactivation patterns in peripheral blood and/or oral mucosal cells from 50 members of this family and from a cohort of normal females. We found excellent concordance between X-inactivation patterns in blood and oral mucosal cell nuclei in all females. Of the 50 female pedigree members studied, 16 showed preferential use (> or = 95% cells) of the paternal X chromosome; none of 62 randomly selected females showed similarly skewed X inactivation was maternally inherited in this family. A linkage study using the molecular trait of skewed X inactivation as the scored phenotype localized this trait to Xq28 (DXS1108; maximum LOD score [Zmax] = 4.34, recombination fraction [theta] = 0). Both genotyping of additional markers and FISH of a YAC probe in Xq28 showed a deletion spanning from intron 22 of the factor VIII gene to DXS115-3. This deletion completely cosegregated with the trait (Zmax = 6.92, theta = 0). Comparison of clinical findings between affected and unaffected females in the 50-member pedigree showed a statistically significant increase in spontaneous-abortion rate in the females carrying the trait (P < .02). To our knowledge, this is the first gene-mapping study of abnormalities of X-inactivation patterns and is the first association of a specific locus for recurrent spontaneous abortion in a cytogenetically normal family. The involvement of this locus in cell lethality, cell-growth disadvantage, developmental abnormalities, or the X-inactivation process is discussed.  相似文献   

19.
We report a large two-generation pedigree with seven affected males segregating for an X-linked mixed conductive sensorineural deafness. The patients present with atypical Mondini-like dysplasia, dilated petrous facial canal, dilatation of the internal auditory meatus fully connected with enlarged cochlear canals, and, in one patient, a wide bulbous posterior labyrinth. Obligatory carrier females are mildly affected. Molecular characterization of this family revealed a deletion of locus DXS169, in Xq21.1. Loci DXS72 and DXS26, which, respectively, flank DXS169 proximally and distally, were intact. Since a gene responsible for X-linked progressive mixed deafness with perilymphatic gusher (DFN3) has previously been assigned by deletion mapping to a slightly more distal interval between DXS26 and DXS121, this study indicates either two different deafness genes or the involvement of a very large region in Xq21.  相似文献   

20.
The DMD gene, which spans more than 2,000 kbp, has been assigned to band Xp21 of the X chromosome. Two subclones (PERT 87-1 and PERT 87-15) of the intragenic locus DXS164 physically are separated by approximately 60 kbp. Linkage studies were done in 49 informative DMD families by using the LINKAGE program. Crossing-over between the loci studied occurred in four families. A recombination rate of 4% (support interval [Zmax-1] 1%-10%), which was 54 (support interval 14-135-fold) times higher than expected, was found with a maximum lod score of 13.50. These data suggest a hot spot for recombination within DXS164.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号