首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Storage of mature or developing potato tubers (Solanum tuberosum “Up-to-Date” variety) at 4 C causes a reduction in the starch content and the elevation in the level of free sugars. This phenomenon is not observed when the tubers are stored at 25 C. Changes in the morphology of cells from developing or mature tubers after storage at 4 or 25 C have been followed by electron microscopy. During all stages of the tuber development the starch granules are surrounded by a membrane derived from the plastid envelope. Storage in the cold induces disintegration of this membrane. A membrane fraction isolated from starch granules of tubers stored at 4 C has a lower buoyant density, and the electrophoretic pattern of its proteins is different from that of a similar membrane fraction obtained from tubers stored at 25 C. It is suggested that the cold-induced changes in the starch and sugar content during storage of potato tubers might be correlated with damage to the membranes surrounding the starch granules and changes in their permeability to degradative enzymes and substrates.  相似文献   

2.
3.
4.
A full length cDNA clone encoding plastidic fructose-1,6-bisphosphatase (cp-FBPase), together with a transit peptide, was isolated from a potato (Solanum tuberosum L.) leaf cDNA library. Potato plants were transformed with the isolated cp-FBPase sequence behind a patatin class I promoter to ensure tuber-specific expression of the enzyme. Plant lines were selected which expressed up to 250 mU (g FW)-1 in the developing tubers, which is 10- to 20-fold the activity found in wild-type tubers. Intact amyloplasts were isolated from in vitro-grown minitubers developed in darkness. Comparison with marker enzymes showed that cp-FBPase activity in transgenic tubers, as well as the low FBPase activity in the wild-type tubers, was localised inside the amyloplasts. The intact amyloplasts isolated from both wild-type and transgenic tubers synthesised starch from [U-14C] glucose-6-phosphate. Conversely, only the transgenic tubers expressing cp-FBPase showed appreciable synthesis of starch from [U-14C] dihydroxyacetone phosphate, and this synthesis rate was correlated to the activity of cp-FBPase. Thus, the expression of cp-FBPase in tubers allows for a new route of starch biosynthesis from triose-phosphates imported from the cytosol. The transgenic tubers did not differ from wild-type tubers with respect to starch content, or the levels of neutral sugars and phosphorylated hexoses.  相似文献   

5.
6.
Escherichia coli and potato (Solanum tuberosum) ADP-sugar pyrophosphatases (EcASPP and StASPP, respectively) are 'Nudix' hydrolases of the bacterial glycogen and starch precursor molecule, ADP-glucose (ADPG). We have previously shown that potato leaves expressing EcASPP either in the cytosol or in the chloroplast exhibited large reductions in the levels of starch, suggesting the occurrence of cytosolic and plastidial pools of ADPG linked to starch biosynthesis. In this work, we produced and characterized potato and Arabidopsis plants expressing EcASPP and StASPP fused with green fluorescent protein (GFP). Confocal fluorescence microscopy analyses of these plants confirmed that EcASPP-GFP has a cytosolic localization, whereas StASPP-GFP occurs in the plastid stroma. Both source leaves and potato tubers from EcASPP-GFP-expressing plants showed a large reduction of the levels of both ADPG and starch. In contrast, StASPP-GFP-expressing leaves and tubers exhibited reduced starch and normal ADPG contents when compared with control plants. With the exception of starch synthase in StASPP-GFP-expressing plants, no pleiotropic changes in maximum catalytic activities of enzymes closely linked to starch metabolism could be detected in EcASPP-GFP- and StASPP-GFP-expressing plants. The overall data (i) show that potato plants possess a plastidial ASPP that has access to ADPG linked to starch biosynthesis and (ii) are consistent with the occurrence of plastidic and cytosolic pools of ADPG linked to starch biosynthesis.  相似文献   

7.
Wild-type (WT) plants of potato (Solanum tuberosum L.) and their transgenic forms carrying agrobacterial genes rolB or rolC under the control of B33 class I patatin promoter were cultured in vitro on MS medium with 2% sucrose in a controlled-climate chamber at 16-h illumination and 22°C. These plants were used as a source of single-node stem cuttings, which were cultured in darkness on the same medium supplemented with 8% sucrose. The tubers formed on them were used for determination of the structure of native starch using the methods of differential scanning microcalorimetry (DSC), X-ray scattering, and scanning electron microscopy. It was found that, in starch from the tubers of rolB-plants, the temperature of crystalline lamella melting was lower and their thickness was less than in WT potato. In tubers of rolC plants, starch differed from starch in WT plants by a higher melting temperature, considerably reduced melting enthalpy, and a greater thickness of crystalline lamellae. Deconvolution of DSC thermogram makes it possible to interpret the melting of starch from the tubers of rolC plants as the melting of two independent crystalline structures with melting temperatures of 65.0 and 69.8°C. Electron microscopic examination confirmed the earlier obtained data indicating that, in the tubers of rolC plants, starch granules are smaller and in the tubers of rolB plants larger than in WT plants. Possible ways of influence of rol transgenes on structural properties of starch in amyloplasts of potato tubers are discussed.  相似文献   

8.
9.
In response to infestation with larvae of the Guatemalan tuber moth(Tecia solanivora), some Solanum tuberosum(potato) varieties exhibit an overcompensation response, whereby the total dry mass of uninfested tubers is increased. Here, we describe early responses,within the first few days, of T. solanivora feeding, in the Colombian potato variety Pastusa Suprema. Nontargeted metabolite profiling showed significant secondary metabolism changes in T. solanivora-infested tubers,but not in uninfested systemic tubers. In contrast,changes in primary metabolism were greater in uninfested systemic tubers than in the infested tubers, with a notable 80% decline in systemic tuber sucrose levels within 1 d of T. solanivora infestation. This suggested either decreased sucrose transport from the leaves orincreased sink strength, i.e., more rapid sucrose to starch conversion in the tubers. Increased sucrose synthesis was indicated by higher rubisco activase and lower starch synthase gene expression in the leaves of infested plants.Elevated sink strength was demonstrated by 45% more total starch deposition in systemic tubers of T. solanivorainfested plants compared to uninfested control plants.Thus, rather than investing in increased defense of uninfested tubers, Pastusa Suprema promotes deposition of photoassimilates in the form of starch as a response to T. solanivora infestation.  相似文献   

10.
Certain combined characteristics of cellular structure and starch properties provide distinctions between varieties of potatoes and bear strong relation to their culinary qualities. Larger tissue cells and larger average starch granules are associated with mealiness. Smaller cells and starch granules characterize the less mealy and “waxy” varieties. Similarly, the same general relationships hold for the varietal characteristics of high vs. low solids and high vs. low starch contents. Within a variety, proportionately larger numbers of large starch granules are associated with tubers of high specific gravity, and more smaller granules, with low specific gravity. There also is a distinct reduction in percent of small granules during storage of tubers. Differences in starch granule size are accompanied by differences in amylose and amylopectin. Small granules contain less amylose and gel at higher temperatures than do the larger starch granules. Amylose content likewise appears to be a varietal characteristic. These variations in amylose content reflect fundamental differences in the properties of the starch gels formed when different varieties of potatoes are cooked. Likewise, there are similar distinctions between the starches within different tissue zones of individual tubers. Cell size also varies characteristically within different tuber regions. Starch gel properties may be manipulated during processing by such treatments as precooking-heating, chilling, freezing, and thawing. These treatments provide some measure of control of textural quality in the finished product. Additives such as stearates or glycerides complex readily with amylose and also influence gel properties and texture in processed potato products. Sucrose accumulated during tuber storage also may increase gel strength and influence texture. Varietal differences in cell structure and in starch granule size and composition offer opportunities for genetic exploitation. The merits of special processing for texture control vs. development of varieties for specific processed product qualities are briefly discussed.  相似文献   

11.
Chlorocholine chloride (CCC) was sprayed on a potato crop 25 days after sowing (DAS) at 5 day intervals for a total of 7 sprays. Activity of sucrose synthase (SS) in the sucrose cleavage direction was many fold higher than that of acid invertase in all the tissues. The activity of alkaline invertase was negligible. A sharp decline in the starch content of stolons of the CCC-sprayed crop was observed between 60 DAS and 70 DAS. This could divert the carbon towards tubers and thus enhancing its availability for starch synthesis. The CCC-treated crop, in general, had higher SS (cleavage) activity in stem, stolons and tubers. A higher sucrose content in the stem of the CCC-treated crop could be due to the high sucrose phosphate synthase (SPS) activity observed in this plant part. In tubers of CCC-treated crops a higher SS (cleavage) activity along with a high sucrose content in tubers during the active tuber filling stage could lead to better availability of UDP-glucose for its conversion to glucose-1-phosphate, which could enter into the amyloplast leading to higher starch content. High SPS activity in tubers of CCC-treated plants ensures that reducing sugars formed are reconverted efficiently to sucrose. The efficiency of developing tubers from CCC-sprayed plants to convert 14C sucrose fed through stolons into starch was about 2.5 times more than in the control.  相似文献   

12.
The subcellular localization and maturation of starch phosphorylase (EC 2.4.1.1) was studied in developing potato tubers. The enzyme is localized inside the stroma of amyloplasts in young tubers, whereas in mature tubers it is found within the cytoplasm in the immediate vicinity of the plastids. A phosphorylase cDNA clone was isolated and used in RNA gel blot experiments to demonstrate that phosphorylase mRNAs are of the same size and abundance in both young and mature tubers. In vitro translation of mRNAs followed by immunoprecipitation with a phosphorylase antiserum indicates that the enzyme is synthesized as a higher molecular weight precursor in both young and mature tubers. The presence of a transit peptide at the N terminus of the protein was confirmed by the sequencing of the phosphorylase cDNA clone. The transit peptide has several structural features common to transit peptides of chloroplast proteins but contains a surprisingly large number of histidine residues. The mature form of the enzyme is present in both young and mature tubers, suggesting that a similar processing of the transit peptide may take place in two different subcellular locations.  相似文献   

13.
Summary An amylose-free potato mutant was isolated after screening 12,000 minitubers. These minitubers had been induced on stem segments of adventitious shoots, which had been regenerated on leaf explants of a monoploid potato clone after Röntgen-irradiation. The mutant character is also expressed in subterranean tubers and in microspores. Starch granules from the mutant showed a strongly reduced activity of the granule bound starch synthase and loss of the major 60 kd protein from the starch granules.  相似文献   

14.
A potato (Solanum tuberosum) cDNA encoding an isoform of disproportionating enzyme (stDPE2) was identified in a functional screen in Escherichia coli. The stDPE2 protein was demonstrated to be present in chloroplasts and to accumulate at times of active starch degradation in potato leaves and tubers. Transgenic potato plants were made in which its presence was almost completely eliminated. It could be demonstrated that starch degradation was repressed in leaves of the transgenic plants but that cold-induced sweetening was not affected in tubers stored at 4 degrees C. No evidence could be found for an effect of repression of stDPE2 on starch synthesis. The malto-oligosaccharide content of leaves from the transgenic plants was assessed. It was found that the amounts of malto-oligosaccharides increased in all plants during the dark period and that the transgenic lines accumulated up to 10-fold more than the control. Separation of these malto-oligosaccharides by high-performance anion-exchange chromatography with pulsed-amperometric detection showed that the only one that accumulated in the transgenic plants in comparison with the control was maltose. stDPE2 was purified to apparent homogeneity from potato tuber extracts and could be demonstrated to transfer glucose from maltose to oyster glycogen.  相似文献   

15.
The aim of this work was to establish whether plastidial phosphoglucomutase is involved in the starch biosynthetic pathway of potato tubers and thereby to determine the form in which carbon is imported into the potato amyloplast. For this purpose, we cloned the plastidial isoform of potato PGM (StpPGM), and using an antisense approach generated transgenic potato plants that exhibited decreased expression of the StpPGM gene and contained significantly reduced total phosphoglucomutase activity. We confirmed that this loss in activity was due specifically to a reduction in plastidial PGM activity. Potato lines with decreased activities of plastidial PGM exhibited no major changes in either whole-plant or tuber morphology. However, tubers from these lines exhibited a dramatic (up to 40%) decrease in the accumulation of starch, and significant increases in the levels of sucrose and hexose phosphates. As tubers from these lines exhibited no changes in the maximal catalytic activities of other key enzymes of carbohydrate metabolism, we conclude that plastidial PGM forms part of the starch biosynthetic pathway of the potato tuber, and that glucose-6-phosphate is the major precursor taken up by amyloplasts in order to support starch synthesis.  相似文献   

16.
马铃薯块茎中由于含有大量的多糖和酚类物质,因此难以从中提取RNA。本实验采用CTAB法从马铃薯块茎中提取了总RNA,并进行了马铃薯病毒的检验。结果表明:得到的RNA完整性好,A260/A280在1.7~2.0范围内,纯度也比较高。用RT-PCR方法进行马铃薯Y病毒的检验,得到了一条与预计扩增长度相同的一条带,并检验出枣庄地区马铃薯Y病毒的感染率为75%。  相似文献   

17.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

18.
In potato tubers two starch phosphorylase isozymes, types L and H, have been described and are believed to be responsible for the complete starch breakdown in this tissue. Type L has been localized in amyloplasts, whereas type H is located within the cytosol. In order to investigate whether the same isozymes are also present in potato leaf tissue a cDNA expression library from potato leaves was screened using a monoclonal antibody recognizing both isozyme forms. Besides the already described tuber L-type isozyme a cDNA clone encoding a second L-type isozyme was isolated. The 3171 nucleotide long cDNA clone contains an uninterrupted open reading frame of 2922 nucleotides which encodes a polypeptide of 974 amino acids. Sequence comparison between both L-type isozymes on the amino acid level showed that the polypeptides are highly homologous to each other, reaching 81–84% identity over most parts of the polypeptide. However the regions containing the transit peptide (amino acids 1–81) and the insertion sequence (amino acids 463–570) are highly diverse, reaching identities of only 22.0% and 29.0% respectively.Northern analysis revealed that both forms are differentially expressed. The steady-state mRNA levels of the tuber L-type isozyme accumulates strongly in potato tubers and only weakly in leaf tissues, whereas the mRNA of the leaf L-type isozyme accumulates in both tissues to the same extent. Constitutive expression of an antisense RNA specific for the leaf L-type gene resulted in a strong reduction of starch phosphorylase L-type activity in leaf tissue, but had only sparse effects in potato tuber tissues. Determination of the leaf starch content revealed that antisense repression of the starch phosphorylase activity has no significant influence on starch accumulation in leaves of transgenic potato plants. This result indicated that different L-type genes are responsible for the starch phosphorylase activity in different tissues, but the function of the different enzymes remains unclear.  相似文献   

19.
Starch is an important renewable raw material with an increasing number of applications. Several attempts have been made to obtain plants that produce modified versions of starch or higher starch yield. Most of the approaches designed to increase the levels of starch have focused on the increment of the amount of ADP-glucose or ATP available for starch biosynthesis. In this work, we show that the overexpression of starch synthase class IV (SSIV) increases the levels of starch accumulated in the leaves of Arabidopsis by 30%-40%. In addition, SSIV-overexpressing lines display a higher rate of growth. The increase in starch content as a consequence of enhanced SSIV expression is also observed in long-term storage starch organs such as potato tubers. Overexpression of SSIV in potato leads to increased tuber starch content on a dry weight basis and to increased yield of starch production in terms of tons of starch/hectare. These results identify SSIV as one of the regulatory steps involved in the control of the amount of starch accumulated in plastids.  相似文献   

20.
Growth ring formation in the starch granules of potato tubers   总被引:1,自引:0,他引:1       下载免费PDF全文
Pilling E  Smith AM 《Plant physiology》2003,132(1):365-371
Starch granules from higher plants contain alternating zones of semicrystalline and amorphous material known as growth rings. The regulation of growth ring formation is not understood. We provide several independent lines of evidence that growth ring formation in the starch granules of potato (Solanum tuberosum) tubers is not under diurnal control. Ring formation is not abolished by growth in constant conditions, and ring periodicity and appearance are relatively unaffected by a change from a 24-h to a 40-h photoperiod, and by alterations in substrate supply to the tuber that are known to affect the diurnal pattern of tuber starch synthesis. Some, but not all, of the features of ring formation are consistent with the involvement of a circadian rhythm. Such a rhythm might operate by changing the relative activities of starch-synthesizing enzymes: Growth ring formation is disrupted in tubers with reduced activity of a major isoform of starch synthase. We suggest that physical as well as biological mechanisms may contribute to the control of ring formation, and that a complex interplay of several factors may by involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号