首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The effects of temperature (4–20°C), relative humidity (RH, 0–100%), pH (3–7), availability of nutrients (0–5 g/l sucrose) and artificial light (0–494 μmol/m2/s) on macroconidial germination of Fusarium graminearum were studied. Germ tubes emerged between 2 and 6 h after inoculation at 100% RH and 20°C. Incubation in light (205 ± 14 μmol/m/s) retarded the germination for approximately 0.5 h in comparison with incubation in darkness. The times required for 50% of the macroconidia to germinate were 3.5 h at 20°C, 5.4 h at 14°C and 26.3 h at 4°C. No germination was observed after an incubation period of 18 h at 20°C in darkness at RH less than 80%. At RH greater than 80%, germination increased with humidity. Germination was observed when macroconidia were incubated in glucose (5 g/l) or sucrose (concentration range from 2.5 × 10?4 to 5 g/l) whereas no germination was observed when macroconidia were incubated in sterile deionized water up to 22 h. Macroconidia germinated quantitatively within 18 h at pH 3–7. Repeated freezing (?15°C) and thawing (20°C) water agar plates with either germinated or non‐germinated macroconidia for up to five times did not prevent fungal growth after thawing. However, the fungal growth rate of mycelium was negatively related to the number of freezing events the non‐germinated macroconidia experienced. The fungal growth rate of mycelium was not significantly affected by the number of freezing events the germinated spores experienced. Incubation of macroconidia at low humidity (0–53% RH) suppressed germination and decreased the viability of the spores.  相似文献   

2.
We analysed the relative effects of food availability and temperature on rates of growth and development of a predatory planktonic water mite, Piona exigua. Growth in length of mites fed Daphnia, Ceriodaphnia and Chydorus was analysed by Gompertz or von Bertalanffy curves; these curves were compared by parallel curve analysis. Growth rates of nymphs and adult female mites increased with temperature; the duration of the imagochrysalis stage decreased. Females grown at 10 °C were smaller at final size than females grown at 15 °C, 18 °C or 22 °C. Females reared at food levels of 15 or 30 prey l−1 grew more slowly and were smaller than those provided with 60 or 120 prey l−1. Nymphs grew more slowly when Daphnia were the only prey, than when smaller prey were available. Food level did not affect nymph growth at 10 °C or 15 °C, but growth at 18 °C or 22 °C may have been slowed at the lowest food levels. Synergistic effects of temperature and food level on nymph growth were apparent only from analysis of growth curves and not from stage duration data.  相似文献   

3.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

4.
Melanin with a high antioxidant and sorption activity comparable to that of synthetic dioxyphenylalanine (DOPA)-melanin was isolated from the biomass of the darkling beetle Alphitobius diaperinus. The pigment was extracted with a solution of potassium hydroxide, followed by precipitation with concentrated hydrochloric acid and hydrolysis of the resulting precipitate with the same acid. The electron paramagnetic resonance (EPR) signal of melanin was characteristic of eumelanins with a spin concentration of 4.9 × 1017 spin per 1 g of dry weight. The melanin concentration that induced 50% inhibition of peroxidation was 9.2 μg/mL (the analogous concentration of DOPA-melanin was 8.0 μg/mL). The maximum of methylene-blue binding to the beetle melanin was 700 mg of dye per 1 g of dry weight of the preparation. The lipid-free melanin preparation exhibited antiradical activity.  相似文献   

5.
An aerobic mixed bacterial culture (CL-EMC-1) capable of utilizing methyl tert-butyl ether (MTBE) as the sole source of carbon and energy with a growth temperature range of 3 to 30°C and optimum of 18 to 22°C was enriched from activated sludge. Transient accumulation of tert-butanol (TBA) occurred during utilization of MTBE at temperatures from 3°C to 14°C, but TBA did not accumulate above 18°C. The culture utilized MTBE at a concentration of up to 1.5 g l−1 and TBA of up to 7 g l−1. The culture grew on MTBE at a pH range of 5 to 9, with an optimum pH of 6.5 to 7.1. The specific growth rate of the CL-EMC-1 culture on 0.1 g l−1 of MTBE at 22°C and pH 7.1 was 0.012 h−1, and the growth yield was 0.64 g (dry weight) g−1. A new MTBE-utilizing bacterium, Variovorax paradoxus strain CL-8, isolated from the mixed culture utilized MTBE, TBA, 2-hydroxy isobutyrate, lactate, methacrylate, and acetate as sole sources of carbon and energy but not 2-propanol, acetone, methanol, formaldehyde, or formate. Two other isolates, Hyphomicrobium facilis strain CL-2 and Methylobacterium extorquens strain CL-4, isolated from the mixed culture were able to grow on C1 compounds. The combined consortium could thus utilize all of the carbon of MTBE.  相似文献   

6.
Melanins are widely used in medicine, pharmacology, cosmetics and other fields. Although several technologies for the purification of water‐insoluble dioxyphenylalanine (DOPA) melanins have been described, a source of water‐soluble melanin is highly desirable. Here we describe an effective procedure for the isolation and purification of water‐soluble melanin using the culture medium of Bacillus thuringiensis subsp. galleriae strain K1. Water‐soluble melanin from this organism has an isoelectric point (pI = 3.0–3.2) and was purified optimally by adsorbtion using the IA‐1r resin and elution as a concentrated solution. The purified melanin obtained exhibited a similar infra‐red absorbtion spectrum to synthetic melanin and contained quinolic and phenolic structures and an amino acid content of around 20% after acid hydrolysis. The molecular weight of the purified melanin determined by SDS‐PAGE was 4 kDa and the electromagnetic spin resonance spectrum of the purified microbial melanin was a slightly asymmetric singlet without hyperfine structure with about 7 Gauss width of the line between points of the maximum incline and g = 2.006. The concentration of paramagnetic centers in melanin is 0.21 × 1018 spin/g. The results obtained provide a rapid, simple and inexpensive method for the large scale purification of water soluble melanin that may have widespread applications.  相似文献   

7.
Ola M.  Heide 《Physiologia plantarum》1969,22(5):1001-1012
Soil application of CCC reduced stem and leaf growth in Begonia plants. This effect was evident with all concentrations tested at 18°C, whereas at 21 and 24°C no growth–retarding effect was observed with 2 × 10?2 M CCC, and with 5 × 10?3 M growth was even stimulated. Flowering was promoted by CCC in long day and neur–critical temperature, particularly under low light intensity in the winter. The formation of adventitious buds in leaves of plants grown at 21 and 24°C was stimulated when the plants received 5 × 10?2 and 2 × 10?2 M CCC, while 8 7times; 10?2 M was inhibitory. In plants grown at 18°C bud formation was inhibited by all CCC concentrations. Root formation in the the leaves was usually stimulated by high CCC concentrations, while root elongation was reduced. The level of ether–extractable. acidic auxin (presumably IAA) in the leaves was lowered by CCC treatment of the plants, hut this required higher CCC concentrations at higt than at low temperature. When applied to detached leaves CCC stimulated bud formation at concentrations ranging from 10?4 to 10?2 M in leaves planted at 18 and 21°C. At 24°C budding was inhibited by 10?2 M CCC, the lower concentrations being stimulatory also at this temperature. Root formation and growth were not much affected by CCC treatment of the leaves, but increased with the temperature. Soil application of Phosfon (4 × 10?4 M) had no effect on growth and flowering, nov did it affect the subsequent regeneration of buds and roots in the leaves. In detached leaves Phosfon stimulated bud formation with au optimum at 10?6 M. Root formation was stimulated by Phosfon at all temperatures, the optimal concentration being 10?5 M, whereas root length was conversely affected. Foliar application of B-995 to intact plants and treatment of detached leaves greatly inhibited the formation of buds and had little effect on root formation. B-99D reduced the growth and delayed flowering in the plants.  相似文献   

8.
The potential of isolates of Pochonia chlamydosporia var. chlamydosporia as biocontrol agents for root-knot nematodes was investigated in vitro and on pistachio plants. On potato dextrose agar, growth of all isolates started at temperatures above 10°C, reached maximum between 25 and 28°C and slowed down at 33°C. On water agar, all isolates parasitized more than 85% of the eggs of Meloidogyne javanica at 18°C after 3 weeks. Filtrates of isolates grown on malt extract broth did not cause more than 5% mortality on second-stage juveniles of M. javanica after 48 h of incubation. A single application of 10×103 chlamydospores (produced on sand–barley medium) g–1 soil, was applied to unsterilised soil planted with pistachio cv. Kalehghochi, and plants were inoculated with 3000 nematode eggs. After 120 days in the glasshouse, nematode multiplication and damage were measured. Ability of fungus isolates to survive in the soil and to grow on roots were estimated by counting colony forming units (cfu) on semi-selective medium. Fungal abundance in soil increased nearly 3-fold and 10×103 and 20×103 cfu g–1 root of pistachio were estimated in pots treated with isolates 40 and 50, respectively. Strain 50 was more abundant in soil and on the roots, infected more eggs (40%) on the roots and controlled 56% of total population of M. javanica on pistachio roots, whereas isolate 40 parasitized 15% of the eggs on the roots and controlled ca. 36% of the final nematode population.  相似文献   

9.
Follicle-stimulating hormone (FSH) was produced in Chinese hamster ovary (CHO) cells using a perfusion bioreactor. Perfusion culture at 37°C yielded a high cell density but a low FSH production. To investigate the effect of culture temperature in the range of 26–37°C on cell growth and FSH production, batch cultures were performed. Lowering culture temperature below 32°C resulted in growth suppression. However, specific productivity of FSH, q FSH, increased as culture temperature decreased, and the maximum q FSH of 43.4 ng/106 cells/h was obtained at 28°C, which is 13-fold higher than that at 37°C. Based on the results obtained from batch cultures, we performed perfusion cultures with two consecutive temperatures. CHO cells were grown up to 3.2 × 107 cells/ml at 37°C and culture temperature shifted down to 28°C to obtain a high FSH titer. Soon after the maximum FSH titer of 21 μg/ml was achieved, a rapid loss of not only viable cell concentration but also cell viability was observed, probably due to the low activities of enzymes related to cell growth. Thus, the extension of production period at 28°C is critical for the enhancement of FSH production, and the use of antiapoptotic genes seems to be promising.  相似文献   

10.
For most of the past 250 000 years, atmospheric CO2 has been 30–50% lower than the current level of 360 μmol CO2 mol–1 air. Although the effects of CO2 on plant performance are well recognized, the effects of low CO2 in combination with abiotic stress remain poorly understood. In this study, a growth chamber experiment using a two-by-two factorial design of CO2 (380 μmol mol–1, 200 μmol mol–1) and temperature (25/20 °C day/night, 36/29 °C) was conducted to evaluate the interactive effects of CO2 and temperature variation on growth, tissue chemistry and leaf gas exchange of Phaseolus vulgaris. Relative to plants grown at 380 μmol mol–1 and 25/20 °C, whole plant biomass was 36% less at 380 μmol mol–1× 36/29 °C, and 37% less at 200 μmol mol–1× 25/20 °C. Most significantly, growth at 200 μmol mol–1× 36/29 °C resulted in 77% less biomass relative to plants grown at 380 μmol mol–1× 25/20 °C. The net CO2 assimilation rate of leaves grown in 200 μmol mol–1× 25/20 °C was 40% lower than in leaves from 380 μmol mol–1× 25/20 °C, but similar to leaves in 200 μmol mol–1× 36/29 °C. The leaves produced in low CO2 and high temperature respired at a rate that was double that of leaves from the 380μmol mol–1× 25/20 °C treatment. Despite this, there was little evidence that leaves at low CO2 and high temperature were carbohydrate deficient, because soluble sugars, starch and total non-structural carbohydrates of leaves from the 200μmol mol–1× 36/29 °C treatment were not significantly different in leaves from the 380μmol mol–1× 25/20 °C treatment. Similarly, there was no significant difference in percentage root carbon, leaf chlorophyll and leaf/root nitrogen between the low CO2× high temperature treatment and ambient CO2 controls. Decreased plant growth was correlated with neither leaf gas exchange nor tissue chemistry. Rather, leaf and root growth were the most affected responses, declining in equivalent proportions as total biomass production. Because of this close association, the mechanisms controlling leaf and root growth appear to have the greatest control over the response to heat stress and CO2 reduction in P. vulgaris.  相似文献   

11.
Phanerochaete chrysosporium was grown in fermentors on NaOH-extracted maple, pine, and cedar barks at the optimum substrate concentration of 1% (w/v). The yields (mg protein/liter) on maple, pine, and cedar were 1500, 1200, and 880, respectively, which are probably due to the different lignin contents of the barks. Lignin is not utilized. The productivities at 30°C obtained for pine (4.07 × 10?2 g protein/liter hr) and cedar (2.63 × 10?2 g protein/liter hr) barks were greater than for maple (2.63 × 10?2 g protein/liter hr). The substrate (bark) was the limiting component of the fermentation. Over the 26–38°C temperature range protein productivity increased by a factor of three (1.55 × 10?2 vs. 4.61 × 10?2 g protein/liter hr) for maple bark. Low agitation rates resulted in an overproduction of cellulase and reduced levels of microbial protein.  相似文献   

12.
In two laboratory experiments, the effects of temperature and food availability on the growth of 10- to 23-mm high specimens of the bivalveArctica islandica were estimated. Each experimental set-up consisted of 5 treatments in which either the food supply or the temperature differed. It was demonstrated thatArctica is able to grow at temperatures as low as 1°C. A tenfold increase of shell growth was observed at temperatures between 1° and 12°C. The greatest change in growth rate took place between 1° and 6°C. Average instantaneous shell growth varies between 0.0003 at 1°C to 0.0032/day at 12°C. The results suggest that temperature hardly affects the time spent in filtration, whereas particle density strongly influences that response. Starved animals at 9°C have their siphons open during only 12% of the time, whereas the siphons of optimally fed animals were open on average during 76% of the observations. Increased siphon activity corresponded to high shell and tissue growth. At 9°C, average shell growth at the optimum cell density of 20×106 cell/l was 3.1 mm corresponding to an instantaneous rate of 0.0026/day. An algal cell density (Isochrysis galbana, Dunaliella marina) ranging between 5 and 7×106 cell/l is just enough to keep shells alive at 9°C. Carbon conversion efficiency at 9°C is estimated to vary between 11 and 14%.  相似文献   

13.
An alternative microbiological method for the production of malate from fumarate is presented. The yeast Dipodascus magnusii was used for this bioconversion. The optimum cell growth temperature was 28°C and the working volume 120 ml. The highest level of fumarase activity during bioconversion was achieved at a pH of 7.5 and a temperature of 37°C. These conditions were determined as optimal. Using sodium fumarate (1M), the maximum specific productivity of malic acid obtained was 1.72 g/(gDCW × h) for intact cells. In the case of ammonium fumarate, it was 2.25 g/(gDCW × h).  相似文献   

14.
Dracaena leaf proliferosis is a newly reported disease affecting Dracaena sanderiana in Egypt. A cause and effect relationship between this disease and the fungus,Fusarium proliferatum var. minus has been established. In addition to D. sanderiana the fungus was found to be pathogenic, when tested in the laboratory, to several other members of the family Liliaceae. While the in vitro growth of the fungus is optimum at 25 °C, symptom expression is best at 30°C. Twelve fungicides were tested for their in vitro effect on fungal growth. Benlate, Rubigan, Saprol, Cercobin and Vitavax-200 came first on the list and inhibited growth at 2.5, 12.0, 55.0, 75.0, and 94.0 μg/ml, respectively. Although, Benlate was the most effective fungicide in this respect it failed to demonstrate similar effect on disease development when applied to plants artificially inoculated with the fungus. Fungal growth was completely inhibited on PDA medium by a bacterium belonging to Bacillus sp. but when the bacterium at a concentration of 1 × 1011 cell/ml was applied 24 h before, at the same time with, or 24 h after inoculation no control of the disease was achieved. Naturally-infected plants could, however, be freed from infection when subjected to a hot air treatment at 35 ± 5 °C during day time and 25 ± 5° C at night for 3 months.  相似文献   

15.
16.
Colletotrichum gloeosporioides (Penz.) causing anthracnose is a potent pathogen of chilli resulting in significant yield loss. The in vitro root colonisation study showed an increase in root bacterial count by 10 × 105 colony forming units/cm root for Bacillus subtilis after 15 days of germination. Population level of the antagonist was stable in talc till the 180th day (30°C – 1.6 × 108; 4°C – 1.9 × 108) and in lignite till the 150th day (30°C – 1.5 × 108; 4°C – 1.3 × 108). Combined application of B. subtilis and carbendazim enhanced all biometric parameters with reduction in disease incidence. Soil, seed, root dip and foliar spray treatment significantly enhanced the growth parameters of chilli in B. subtilis inoculated treatments in comparison to the untreated control. Seed application resulted in highest plant fresh weight (76.84 g) and dry weight (34.17 g) compared to the untreated control (50 g and 21 g fresh and dry weight, respectively). Highest plant height ranging from 70 cm (soil application) to 77 cm (dip treatment) with Bacillus inoculation was comparable with carbendazim treatment (61 cm with soil application) and 78 cm (dip treatment) and significantly higher than the untreated control (58.2 cm with soil and 61 cm with application, respectively). Dip treatment resulted in significant increase in root length with B. subtilis (33 cm) and carbendazim (32.5 cm) in comparison to untreated control (15 cm). Co-inoculation of pathogen with B. subtilis (singly and with carbendazim) not only reduced the disease incidence but also improved all the biometric parameters in comparison to challenge inoculation. Root dip application was effective in promoting growth while seed application was effective in disease control.  相似文献   

17.
Growth of the ciliate, Colpoda steinii, was studied in shake flasks, 30-l., stirred jars, and a conventional 50-gal. stainless-steel fermentor. This organism was growth with either washed or unwashed Escherichia coli cells as the sole food source. Generation times of 3–4 hr. were obtained at 30°C. With average yields of 78% (0.78 g. of protozoa/g. of bacteria). In a 100-l. fermentation, a dry weight concentration of 12.5 g./l. (1.04 × 107 protozoa/ml.) was reached by means of periodic addition of E. coli paste. The influence of bacterial concentration on the growth rate of the protozoa was also investigated. It was found that this relationship could be represented by a Michaelis-Menten equation with a maximum specific growth rate of 0.23 hr. ?1 (3-hr. generation time) and a bacterial concentration for half-maximum growth rate of 6.0 mg. (dry wt.)/l.  相似文献   

18.
Pestalotia rhododendri was exposed to vapours from 1 ml propanol solution in water and linear growth, formation of aerial hyphae and production of conidia were determined. A special Petri dish technique was used and maximum stimulation of conidial formation was induced by the vapours from a propanol concentration of 3–4 % (v/v) at 25°C. When propanol was added directly to the medium, a concentration of 1.2 × 10?2M was optimal for growth and sporulation at 30°C. Sporulation stimulated by propanol was observed at temperatures from 20–32°C, with an optimum at 30°C. Certain observations indicated that an exposure to propanol for 24 hours was enough to induce a stimulated spore production. The stimulation was noticed on different media at 25°C, and was more pronounced at 30°C. One exception was observed. Propanol did not promote sporulation when the fungus was grown on maltagar at 30°C. Propanol 3 ° (v/v) in combination with the standard medium containing (NH4)2-tartrate as sole nitrogen source, inhibited the linear growth at 15–20°C, was inactive at 22.5° and 25°C, and stimulated growth at 27.5–31°C. The stimulatory effect was maximal at 30°C. Other media were tested at 25° and 30°C. At both temperatures stimulations of linear growth caused by propanol were observed with a medium containing KNO3 as sole nitrogen source, and inhibitions with maltagar and another medium containing l -asparaginc as sole nitrogen source. The linear growth could be either inhibited or stimulated while the sporulation was stimulated.  相似文献   

19.
All deviations from optimum cultivation temperature affect strongly the physiology and morphology of cells ofCandida boidinii strain 2 during growth in methanol-limited chemostat. The optimum cultivation temperature was 28–30 °C at which maximum cell concentration and maximum cell yield (Y S 0.4 g/g) were achieved. At suboptimal growth temperatures the cells were rich in cell protein, RNA, alcohol oxidase (AO) and in peroxisomes. Formation of cubic peroxisomes and a 20 % decrease of budding cells in the population was observed. At supraoptimal growth temperatures (>30 °C) a sharp decrease in AO activity was accompanied by degradation of peroxisomes in the cells. The culture forms pseudomycelium: at 34 °C the cells stop growing and they are washed out of the bioreactor.  相似文献   

20.
Lifetable demography and reproductive traits of a Kenyan strain of the rotifer Brachionus angularis were investigated using individual and small batch culture approaches. The rotifer was identified morphologically before conducting studies at 20, 25 and 30 °C, using Chlorella vulgaris at 2.5 × 105 to 2.5 × 107 cells ml–1. The rotifers were highly fecund, producing 2.11 ± 0.07 offspring female–1 day–1 and reproductive, producing 8.43 ± 0.24 offspring female–1 at 25 °C with 2.5 × 106 algal cells ml–1. The highest intrinsic rate of natural increase (0.74 ± 0.02 d–1), specific population growth rate (0.49 ± 0.01), longest life expectancy at hatching (12.41 ± 0.28 d) and shortest generation time (2.87 ± 0.03 d) also occurred at 25 °C with 2.5 × 106 algal cells ml–1. The duration of hatching to first spawning was shortest (2.86 ± 0.21 h) at 30 °C with 2.5 × 107 algal cells ml–1 and longest (8.83 ± 0.39 h) at 20 °C with 2.5 × 105 algal cells ml–1. The highest population density (255.7 ± 12.6 ind. ml–1) was realised at 25 °C with 2.5 × 106 cells ml–1 on Day 8, whereas the lowest population density (122.0 ± 3.6 ind. ml–1) was realised at 20 °C with 2.5 × 105 cells ml–1 on Day 8. The lorica length and width of the Kenyan strain of B. angularis are 85.6 ± 3.1 µm and 75.4 ± 3.6 µm, respectively. The rotifer optimally reproduces at 25 °C when fed with 2.5 × 106 algal cells ml–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号