首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antistress effect of extracellular peptides on UV irradiated yeast of different phylogenetic groups was studied. Yeast from different ecotopes and taxonomic groups exposed to UV radiation of a lethal intensity showed a protective effect and reactivating effect with participation of extracellular peptides. The highest protective activity was found in peptide reactivation factors (RFs) of bakery yeast-Saccharomyces cerevisiae, Kluyveromyces fragilis, and Candida utilis; the highest reactivating activity was exhibited by factors of the above-mentioned cultures and Debariomyces hansenii. Cross-protective and reactivating effects of RFs of yeast belonging to different taxonomic groups were demonstrated. Cross-protection increased two to three times after preexposure of reactivation factors to UV light (activation) in contrast to their reactivating effect.  相似文献   

2.
Protective effect of the extracellular peptide fraction (reactivating factors, RF) produced by yeasts of various taxonomic groups (Saccharomyces cerevisiae, Kluyveromyces lactis, Candida utilis, and Yarrowia lipolytica) on probiotic lactic acid bacteria (LAB) Lactobacillus casei, L. acidophilus, and L. reuteri under bile salt (BS)-induced stress was shown. RF of all yeasts were shown to be of peptide nature; the active component of the S. cerevisiae RF was identified as a combination of low-molecular polypeptides with molecular masses of 0.6 to 1.5 kDa. The protective and reactivating effects of the yeast factors were not species-specific and were similar to those of the Luteococcus japonicus subsp. casei RF. In BS-treated cells of the tester bacteria, a protective effect was observed after 10-min preincubation of the LAB cell suspension with yeast RF: the number of surviving cells (CFU) was 2 to 4.5 times higher than in the control. The reactivating effect was observed when RF was added to LAB cell suspensions not later than 15 min after stress treatment. It was less pronounced than the protector effect, with the CFU number 1 to 3 times that of the control. Both the protector and the reactivating effects were most pronounced in the S. cerevisiae and decreased in the row C. utilis > K. lactis > Y. lipolytica. The efficiency of protective action of yeast RF was found to depend on the properties of recipient LAB cells, with the L. casei strain being most sensitive to BS treatment. In both variants, the highest protective effect of RF (increase in the CFU number) was observed for L. acidophilus, while the least pronounced one was observed for L. casei. The reasons for application of the LAB strains combining high stress resistance and high response to stress-protecting metabolites, including RF factors, as probiotics, is discussed.  相似文献   

3.
It has been shown that Saccharomyces cerevisiae, Kluyveromyces lactis, and Candida utilis strains produce the protein exometabolites, which has a protective and reactivating effect on the ultraviolet irradiated yeast cells. The protective effect of the preliminary ultraviolet irradiated (activated) protein exometabolite of all strains increased 2–3 times, though its reactivating activity did not change. Yarrowia lipolytica yeast cells, isolated from the areas with the high daily irradiation, and Endomyces magnusii, the obligate fungi parasites, were characterized by the highest ultraviolet tolerance in comparison with the other strains. However, they did not produce the exometabolites with the antistress effect. Luteococcus casei reactivating factor demonstrated protective and reactivating cross-action in relation to the ultraviolet irradiated S. cerevisiae, K. lactis, and C. utilis cells and were inactive in relation to Y. lipolytica and E. magnusii. Using killer and nonkiller S. cerevisiae strain, it has been shown that the peptide exometabolite accumulation was not associated with toxin production.  相似文献   

4.
Wild-type and mutant (AB 1157 and K-12) strains of Escherichia coli were shown to synthesize the logarithmic growth phase, exometabolites reactivating UV-irradiated cells of producer strains. The exometabolites of the strain K-12 were of protein nature and had a molecular weight of no more than 10 kDa. The reactivating activity of these exometabolites was inversely related to bacterial survival and slightly increased under the influence of stress factors. The reactivating factor of Luteococcus casei had a cross-reactivating and protective effect on UV-irradiated cells of E. coli strain K-12. Due to activation of the reactivating factor after UV irradiation and heating, the cross-protective effect increased more than threefold. The reactivating effect remained unchanged under these conditions. The protein exometabolites of E. coli did not induce cross-stress response in L. casei.  相似文献   

5.
The biological effect of the extracellular peptide reactivating factor (RF) from Luteococcus casei on cells of probiotic cultures was studied. The RF showed the protective and reactivating effects on the Bifidobacterium bifidum cells under the action of bile salts and an acidic stress. Also, it acted as a cryoprotector during lyophilisation and long-term culture storage. The RF and the L. casei culture liquid (CL) were shown to have bifidogenic properties. The degree of protection and reactivation of lactic-acid bacteria under the action of bile salts depended on the particular strain properties. The maximum degree of protection (more than thirteen-fold) and reactivation (close to three-fold) was found in Lactobacillus casei, while the minimum values were characteristic of Lactobacillus reuterii. The resistance of lactobacilli to bile was increased in the row of L. acidophilus, L. casei, L. plantarum, L. rhamnosus, and L. reuterii correlating with the RF protection degree.  相似文献   

6.
The effect of the extracellular peptide reactivating factor (RF) synthesized by Luteococcus casei on stress response of Escherichia coli cells subjected to UV irradiation was studied. For these studies, we constructed a test strain carrying the umuD-lacZ operon. The expression rate of this operon reflects the rate of SOS response. Protective effect of RF, defined as the number of cells retaining the colony-forming activity (CFU) after UV irradiation (49–1166 J/m2), was dose-dependent, species-nonspecific, and increasing with increase of the stress load. RF was demonstrated to possess the properties of a direct adaptogen: 15 min of preincubation with RF caused a 1.5–6-fold decrease in expression of the umuD SOS response gene in UV-treated cells, concurrently with a 1.2–7.5 times increase in the number of viable cells (those having retained their colony-forming activity). The probable mechanisms of the protective effect of RF are being discussed.  相似文献   

7.
The culture liquid of Luteococcus japonicus subsp. casei was found to be able to reactivate cells of this bacterium inactivated by UV irradiation or heat shock. The antistress activity of the culture liquid was due to the presence of an extracellular exometabolite of a protein nature with a molecular mass of more than 10 kDa. When the bacterium was grown in a nutrient broth or glucose-containing mineral medium, the antistress protein was secreted by cells in the logarithmic growth phase. The reactivating effect of the antistress protein was inversely proportional to the survival rate of stressed cells.  相似文献   

8.
Reactivating factor (RF) from Luteococcus japonicus subsp. casei was shown to be constitutively synthesized and to act a by one-step mechanism, being activated independently from stress. Cell reactivation (reversion of a cell’s ability to form macrocolonies) might be ensured by the membrane mechanism of RF action, which is proved with the dependence of antistress activity from the condition of the cytoplasmic membrane and with the form of concentration dependence. The incubation of UV-treated L. casei suspension with RF increased the number of cells with intact barrier membrane (1.6–1.8-fold increase compared to RF-untreated cells) and the number of colony-forming cells. Cross defensive and reactivating RF effects on both L. casei and yeast Saccharomyces cerevisiae cells were described. Bacterial and yeast’s RF compete for membrane receptors. Matrix Assisted Laser Desorption/Ionization time-of-flight (MALDI-TOF) spectrometry revealed that RF of L. casei contained two major peptides of 5.8 and 7.6 kDa, while RF of S. cerevisiae was represented by a single peptide of 5.8 kDa. The presence of 5.8 kDa peptide in RF from bacteria and yeasts might ensure cross responses in these organisms.  相似文献   

9.
The alkaline protease genes (cDNAALP2 gene and ALP2 gene) were amplified from complementary DNA (cDNA) and genomic DNA of the marine yeast Aureobasidium pullulans HN2-3, respectively. An open reading frame of 1,248 bp encoding a 415-amino acid protein with a calculated molecular weight of 42.9 kDa was characterized. The ALP2 gene contained two introns, which had 54 and 52 bp, respectively. When the cDNAALP2 gene was cloned into the multiple cloning sites of the surface display vector pINA1317-YlCWP110 and expressed in cells of Yarrowia lipolytica, the cells displaying protease could form a clear zone on the double plate containing milk protein and had protease activity. The cells displaying alkaline protease were also found to be able to produce bioactive peptides from different sources of proteins. The peptides produced from single-cell protein of marine yeast strain G7a had the highest angiotensin-converting enzyme inhibitory activity, while the peptides produced from spirulina protein had the highest antioxidant activity. This is the first report that the yeast cells displaying alkaline protease were used to produce bioactive peptides.  相似文献   

10.
Wild-type and mutant (AB 1157 and K-12) strains of Escherichia coli were shown to synthesize the logarithmic growth phase, exometabolites reactivating UV-irradiated cells of producer strains. The exometabolites of the strain K-12 were of protein nature and had a molecular weight of no more than 10 kDa. The reactivating activity of these exometabolites was inversely related to bacterial survival and slightly increased under the influence of stress factors. The reactivating factor of Luteococcus casei had a cross-reactivating and protective effect on UV-irradiated cells of E. coli strain K-12. Due to activation of the reactivating factor after UV irradiation and heating, the cross-protective effect increased more than threefold. The reactivating effect remained unchanged under these conditions. The protein exometabolites of E. coli did not induce cross-stress response in L. casei.  相似文献   

11.
Abstract

Candida rugosa is an excellent source of multiple lipase and esterase enzymes; therefore, it is of technological importance to formulate the medium that provides high activity for each enzyme. In this work, the cultivation medium comprising complex nutrients that provided the highest activity, productivity, and yield of C. rugosa enzymes individually was formulated. Time courses of the extracellular and intracellular lipase and esterase activities of C. rugosa were represented and the role of protease in the cultivation progress was discussed. Urea, soy-peptone, yeast extract, a mixture of soy-peptone and yeast extract, cheese whey, and wheat mill bran were tested for their lipolytic and esterasic activities. Urea provided considerably higher extracellular lipase activity when compared to other nitrogen sources; however, soy-peptone provided the highest extracellular esterase activity. Hazelnut, olive, sesame, soybean, and flax seed oils affected the enzyme activities to different extents related to their fatty acid compositions. Hazelnut oil and olive oil provided the highest extracellular lipase and esterase activities, respectively, whereas sesame oil produced the highest biomass. High C18 and C16 ester contents of vegetable oils promoted high lipase and esterase productions, respectively. A temperature of 30°C yielded the highest extracellular and intracellular lipase and esterase activities; however, 35°C produced the highest biomass.  相似文献   

12.
Cross protection of members of the domains Bacteria, Archaea, and lower Eukaryota from stress factors due to the action of extracellular low-molecular metabolites with adaptogenic functions was shown. The adaptogen produced by Luteococcus japonicus subsp. casei and described previously as a reactivating factor (RF) was shown to protect the yeasts Saccharomyces cerevisiae, archaea Haloarcula marismorti, and the cells of higher eukaryotes (HeLa) against weak stressor impacts. Production of an archaeal extracellular metabolite with a weak adaptogenic effect of the producer cells and capable of a threefold increase in survival of heat-inactivated yeast cells was discovered. Our results confirm the similarity of the compensatory adaptive reactions in prokaryotes (bacteria and archaea) and eukaryotes.  相似文献   

13.
Summary The denV gene of bacteriophage T4 was reconstituted from two overlapping DNA fragments cloned in M13 vectors. The coding region of the intact gene was tailored into a series of plasmid vectors containing different promoters suitable for expression of the gene in E. coli and in yeast. Induction of the TAC promoter with IPTG resulted in overexpression of the gene, which was lethal to E. coli. Expression of the TACdenV gene in the absence of IPTG, or the use of the yeast GAL1 or ADH promoters resulted in partial complementation of the UV sensitivity of uvrA, uvrB, uvrC and recA mutants of E. coli and rad1, rad2, rad3, rad4 and rad10 mutants of S. cerevisiae. The extent of denV-mediated reactivation of excision-defective mutants was approximately equal to that of photoreactivation of such strains. Excision proficient E. coli cells transformed with a plasmid containing the denV gene were slightly more resistant to ultraviolet (UV) radiation than control cells without the denV gene. On the other hand, excision proficient yeast cells were slightly more sensitive to killing by UV radiation following transformation with a plasmid containing the denV gene. This effect was more pronounced in yeast mutants of the RAD52 epistasis group.  相似文献   

14.
The study was designed to determine whether leucine-enkephalin (L-ENK) was present on the nerve cells of the scallop Chlamys farreri. Furthermore, the constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) activity was investigated after different doses of L-ENK were added into the haemolymph of C. farreri. Some nerve cells immunoreactive to anti-leucine-enkephalin sera were observed in the cerebral ganglia and pedal ganglia. Intracellular and extracellular cNOS and iNOS activity of the haemolymph was induced with increasing concentration of L-ENK. The highest of the extracellular iNOS and cNOS activity was 0.84 ± 0.02 (U) and 1.30 ± 0.07 (U), respectively. The highest of the intracellular iNOS and cNOS activity was 1.51 ± 0.13 (U) and 2.11 ± 0.13 (U), respectively. Both the intracellular and extracellular iNOS and cNOS activity was highest when the concentration of L-ENK was 5 µg mL?1. Higher or lower concentrations of L-ENK did not significantly induce the cNOS and iNOS activity. The data suggests an involvement of opioid peptides in the regulation and improvement of the immune processes of C. farreri.  相似文献   

15.
Summary Therad 3 gene ofSaccharomyces cerevisiae appears to code for one of the enzymes involved in the repair of UV induced pyrimidine dimers. Haploid and diploid yeast cultures carrying different mutant alleles of therad 3 gene show considerable variation in their responses to both UV inactivation and post UV modifying treatments such as liquid holding in basal medium and photoreactivation. Positive liquid holding recovery was shown only by those diploid cultures containing alleles which conferred the highest levels of UV resistance. The results indicate that liquid holding recovery in yeast requires the activity of the excision-repair pathway for expression.  相似文献   

16.
The yeast Saccharomyces cerevisiae is mortal. Before they die, individual yeasts bud repeatedly producing a finite number of progeny, which have the capacity for a full life span. A feature of aging in many species is the waning of resistance to stress. To determine whether this is the case in yeast, we have examined the survival (viability) of age-synchronized populations of yeasts of various ages, spanning youth, midlife, and old age, after irradiation with ultraviolet light (UV). Resistance to UV was biphasic. There was an increase through midlife, followed by a precipitous decline. For comparison, another mutagenic agent, ethyl methanesulfonate (EMS), was tested in the same way. The response was very different. A uniphase decrease in resistance to this DNA-alkylating agent was found with a plateau later in life. The results argue that the increase in resistance to UV with age is an active process and not simply a monotonic age change. RAS2 is among the genes that determine yeast longevity. This gene is preferentially expressed in young cells and has a life span-extending effect on yeasts. One known function of RAS2 is to mount a protective response to irradiation by UV, which occurs independently of DNA damage. The distinction between UV and EMS found here is consistent with the notion that resistance to UV plays a role in yeast longevity in a manner not related to DNA damage. Furthermore, it suggests that RAS2 may participate in this response. We have found that RAS2 expression and UV resistance coincide in middle-aged yeasts bolstering this possibility. These data and the eclipse in activity of several longevity determining genes at midlife in yeasts also raise the possibility that active life maintenance processes function through this period, after which the organism operates on any remaining reserves until death. © 1996 Wiley-Liss, Inc.  相似文献   

17.
The study of the effect of nucleoside phosphates on the activity of cyanide-resistant oxidase in the mitochondria and the submitochondrial particles of Yarrowia lipolytica showed that adenosine-5-monophosphate (AMP) did not stimulate the respiration of the intact mitochondria. The incubation of the mitochondria at room temperature (25°) for 3–5 h or their treatment with ultrasound, phospholipase A, and the detergent Triton X-100 at a low temperature inactivated the cyanide-resistant alternative oxidase. The inactivated alternative oxidase could be reactivated by AMP. The reactivating effect of AMP was enhanced by azolectin. Some other nucleoside phosphates also showed reactivating ability, in the following descending order: AMP = GMP > GDP > GTP > XMP > IMP. The apparent reaction rate constant K m for AMP upon the reactivation of the alternative oxidase of mitochondria treated with Triton X-100 or incubated at 25°C was 12.5 and 20 M, respectively. The K m for AMP upon the reactivation of the alternative oxidase of submitochondrial particles was 15 M. During the incubation of yeast cells under conditions promoting the development of alternative oxidase, the content of adenine nucleotides (AMP, ADP, and ATP) in the cells and their respiration tended to decrease. The subsequent addition of cyanide to the cells activated their respiration, diminished the intracellular content of ATP by three times, and augmented the content of AMP by five times. These data suggest that the stimulation of cell respiration by cyanide may be due to the activation of alternative oxidase by AMP.  相似文献   

18.
The persistence of latent HIV-infected cellular reservoirs represents the major hurdle to virus eradication in patients treated with highly active antiretroviral therapy, referred to as HAART. HIV-1 reservoirs are long-lived resting CD4+ memory cells containing the virus latently integrated. Since the HIV-1 reservoirs are not targeted by HAART, reactivation therapy has been suggested to purge viral latency. Bioassay-guided study of an ethyl acetate extract of Euphorbia laurifolia afforded two isomeric diterpenes that showed differential activity over HIV-1 reactivation. A previously reported compound was isolated too from Euphorbia lactea. This compound showed a potent HIV-1 reactivating effect. Bioassays results showed that HIV-1 reactivation activity is influenced by distinct structural characteristics.  相似文献   

19.
1. Acid-inactivated yeast invertase could not be regenerated in the presence of the proteolytic enzymes trypsin, pepsin, and chymotrypsin. 2. Certain foreign proteins of non-enzymatic nature partially inhibited the reactivation of acid-inactivated invertase. 3. Certain proteins as gelatin, lacto-globulin, and carbohydrate-free horse crystalbumin did not prevent the reactivation of invertase at all. 4. Highly purified reactivated invertase was shown to exhibit an effect typical of original native invertase; that is, acceleration of its activity in presence of foreign protein at pH 3.0. 5. Native invertase was not digested by trypsin and chymotrypsin. 6. The addition of trypsin and chymotrypsin to reactivating invertase did not affect the invertase which had already reverted to the active form, but prevented further reactivation of inactive invertase.  相似文献   

20.
In vitro as well as in vivo evaluation of the reactivating efficacy of various oximes against nerve agent-inhibited acetylcholinesterase has been usually done with the help of animal experiments. Nevertheless, previously published data indicate that the reactivation potency of oximes may be different in human and animal species, which may hamper the extrapolation of animal data to human data. Therefore, to better evaluate the efficacy of various oximes (pralidoxime, obidoxime, HI-6, K033) to reactivate brain acetylcholinesterase inhibited by sarin by in vitro methods, human, rat and pig brain acetylcholinesterase were used to calculate kinetic parameters for the reactivation. Our results show differences among the species, depending on the type of oxime, and indicate that data from animal experiments needs to be carefully evaluated before extrapolation to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号