首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】探究药用植物川楝内生放线菌多样性,从中挖掘出新的放线菌菌株,发现新的潜在农业生防和医药先导化合物。【方法】从四川境内的资阳、遂宁以及重庆万州采集川楝的根、茎、叶、果、皮,采用纯培养方法,用4种培养基共分离获得148株放线菌。通过形态学观察筛选出60株放线菌进行RFLP分析,选出代表菌株进行16S r RNA基因序列分析。以3株细菌和6株病原真菌作为指示菌株,检测初筛出的60株菌株的抗菌活性以及聚酮合酶(PKSⅠ、PKSⅡ)基因、非核糖体多肽合成酶(NRPS)基因和卤化酶(Halo)基因。【结果】基于16S r RNA-RFLP分析,60株放线菌被分成10簇,筛选出25株代表菌株分别属于7个属,包括Streptomyces、Micromonospora、Planotetraspora、Streptosporangium、Nocardiopsis、Prauseria、Microbispora,其中链霉菌占73.3%。供试的川楝内生放线菌对细菌、真菌有不同程度的抗菌活性;其中含有4类化合物合成基因的菌株占10%-55%。【结论】药用植物川楝内生放线菌具有丰富的多样性,且不同地区不同部位川楝组织中放线菌的种群存在差异;分离菌株广谱的抗菌活性证明,川楝内生放线菌在次生代谢产物合成方面具有巨大潜力,这为进一步的药物开发提供了丰富的菌种资源。  相似文献   

2.
Abstract

The Sahara, one of the most extreme environments on Earth, constitutes an unexplored source of alkalitolerant actinobacteria. In this work, we studied the diversity of alkalitolerant actinobacteria in various soils collected from different regions of the Algerian Sahara. A total of 29 alkalitolerant actinobacterial strains were isolated by using a complex agar medium. The diversity of these actinobacteria was evaluated using a polyphasic approach, which included morphological, chemotaxonomic, physiological (numerical taxonomy) and 16S rRNA gene analyses. The isolates which were assigned to the genus Nocardiopsis, shared relatively low 16S rRNA gene sequences similarities compared to closely related species suggesting that they belonged to putatively new species. All of the strains were tested for antibiotic activity against a broad range of microorganisms and screened for genes encoding polyketide synthases and non-ribosomal peptide synthetases and found to have the potential to produce secondary metabolites. Consequently, the study supports the view that extreme environments contain many novel actinobacteria, which represent an unexplored source for the discovery of biologically active compounds.  相似文献   

3.
Marine actinobacteria were isolated from the sediment samples collected in Xinghai Bay, Xiaoping Island and Changhai in Dalian, China. Fifteen selective media were employed, of which Humic acid-Vitamin medium recovered the highest number of isolates. Eleven of the 239 isolates obtained from the selective media were selected for further investigations based on colony morphology and pigment formation. Phylogenetic analysis of their 16S rRNA sequences showed that these strains belong to the genera of Streptomyces and Micromonospora. One of these strains identified is a new species of Streptomyces. Type I polyketide synthase (PKSI) gene fragments were amplified from three strains. The PKSI sequence of one of these strains (S187) showed high homology to the KS gene involved in meridamycin biosynthesis. Based on this result, the neurotrophic activity of S187 was further investigated. Culture broth of S187 was applied to rat pheochromocytoma (PC12) cells, and a 2.3-fold increase in growth over control cells was observed by the 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide assay. These results indicated the importance of further exploration of the marine actinobacteria in Dalian sea area for antimicrobial agents and type I polyketides.  相似文献   

4.
In Saudi Arabia, halophytes occupy tidal and intertidal forest ecosystems. They and their associated microflora have immense potential to yield novel and important useful natural products. Three halophytes (Avicennia marina, Halocnemum strobilaceum, Zygophyllum qatarense) were targeted for the isolation and identification of populations of endophytic and rhizospheric bacteria having antimicrobial potential. A total 554 bacterial isolates were initially screened against oomycetes fungal pathogens, Phytophthora capsici and Pythium ultimum. Of these, only 57 rhizospheric and endophytic bacteria exhibited inhibition against the targeted bioassay oomycetes. Tentative identification of the bacteria was on the basis of 16S rRNA gene sequences which revealed 92–100% sequence identity to type strains of related species and placed these organisms in six major classes: Actinobacteria, γ-Proteobacteria, Firmicutes, α-Proteobacteria, Flavobacteriia and β-Proteobacteria. When checked for lytic enzyme production, mostly the isolates of Actinobacteria and Firmicutes were potential enzyme producers. Detection of secondary metabolite biosynthetic genes – type I polyketide synthases, type II polyketide synthases and nonribosomal peptide synthetases – confirmed that 21 (35.5%) isolates were positive for at least one type of the biosynthetic gene. In order to identify metabolites, three isolates, Alteromonas australica (EA73), Aidingimonas halophila (EA105) and Halomonas zincidurans (EA127), were selected and subjected to chemical analyses using liquid chromatography–mass spectrometry and gas chromatography–mass spectrometry. Both analyses showed the presence of different bioactive compounds in the culture extracts of isolates some of which are already reported for their diverse biological activities such as 2, 4-Diacetylphloroglucinol. Our results demonstrated that halophytes represent an important source of potentially active bacteria producing antifungal metabolites of medical significance.  相似文献   

5.
Aims: The aim of this study was to screen antitumour and antimicrobial activities of endophytic actinomycetes isolated from pharmaceutical plants in rainforest in Yunnan province, China. Methods and Results: Antitumour activity was studied by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and antimicrobial activity was determined by agar well diffusion method. The high bioactive endophytic isolates were identified and further investigated for the presence of polyketide synthases (PKS‐I, PKS‐II) and nonribosomal peptide synthetases (NRPS) sequences by specific amplification. The molecular identification confirmed that the 41 isolates showed significant activities were members of the genus Streptomyces. Among them, 31·7% of endophytic streptomycete cultures were cytotoxic against A549 cells, 29·3% against HL‐60 cells, 85·4% against BEL‐7404 cells, 90·2% against P388D1 cells, 65·9% were active against Escherichia coli, 24·4% against Staphylococcus aureus, 31·7% against Staphylococcus epidermidis, 12·2% against Candida albicans and no strain displayed antagonistic activity against Klebsiella pneumoniae. High frequencies of positive PCR amplification were obtained for PKS‐I (34·1%), PKS‐II (63·4%) and NRPS (61·0%) biosynthetic systems. Conclusions: Many endophytic streptomycetes isolated from pharmaceutical plants in rainforest possess remarkable and diverse antitumour and antimicrobial bioactivities. Significance and Impact of the Study: These endophytic streptomycetes are precious resources obtained from rainforests, and they could be a promising source for bioactive agents.  相似文献   

6.
Fang LZ  Kun XC  Song ZC  Qin XJ  Qiu HY  Qun DC  He MM 《Current microbiology》2011,62(4):1152-1159
A total of 287 agricultural soil samples collected from 26 provinces or autonomous regions of China were tested on their ability to suppress the conidial germination of nine biocontrol fungal agents. These soil samples showed great differences in the degree to inhibit the germination of conidia (22.8% < mean inhibition rate < 97.5%), but all exhibited fungistatic activities above the moderate levels (mean inhibition rate > 50%) to most of tested fungi. Ten soil samples that have stronger fungistatic intensity (germination inhibition rate > 68.3%) to the target fungi, Trichoderma viride and Paecilomyces lilacinus, were selected to evaluate their soil actinobacteria involved fungistasis in soil. Of the 1,000 isolates from those soil samples, 345 actinobacteria exhibited fungistatic activity to conidial germination of T. viride and P. lilacinus with germination inhibition rates higher than 10%. Sequences encoding 16S rRNA gene of the 345 actinobacteria were analyzed by ARDRA and resulted 44 different ARDRA types. Fifty-six isolates, at least one from each unique ARDRA type, were selected for 16S rDNA sequencing and phylogenetic analysis. Results indicated that the actinobacteria involved in the soil fungistasis had close phylogenetic relationship with the members of Sterptomycetaceae, Microbacteriaceae, Micrococcaceae, and Nocardiacea.  相似文献   

7.
In total, 53 marine actinobacteria were isolated from the soils of six different locations in Goa and Kerala, on the west coast of India. All the isolates were screened for their antifungal properties against some phytopathogenic fungi by dual culture experiments. Among the 53 actinobacterial isolates, five isolates inhibited the growth of phytopathogens, namely Colletotrichum falcatum, Thielaviopsis paradoxa and Fusarium semitectum. But none of them were effective against Aspergillus niger, Aspergillus candidus and Aspergillus flavus. The antifungal activity of the actinobacteria was tested by food poisoning techniques, using four different concentrations (0.5%, 1.0%, 1.5% and 2.0%) of cell-free culture filtrates, which showed promising activity (almost 100% inhibition) against three pathogenic and one non-pathogenic fungi at 2% extract concentration. A comparison of the antifungal activity of the actinobacteria was also made with three commercial fungicides, namely hexaconazole, thiophanate methyl and propiconazole. The identity of the antagonistic actinobacteria was confirmed based on the morphological, cultural, biochemical, chemo-taxonomical and physiological characteristics. Among 5 antagonistic isolates, three antagonistic isolates were assigned to the genus Streptomyces, Nocardiopsis (1) and Saccharopolyspora (1).  相似文献   

8.
Mangrove ecosystems generate the major biodiversity hotspots of actinobacteria. Among the actinobacteria, Streptomyces species are the prolific producers of bioactive natural products. In this study, with research efforts to discover biopotential compounds from marine actinobacteria, 41 actinobacterial strains were isolated from sediment soil sample of Indian mangrove regions. The phylogeny prediction using the 16S rRNA gene sequences revealed that the isolates were related to Streptomyces. Isolates were further screened based on a two-step process wherein the first step, around nine strains, unveiled the presence of type 1 polyketide synthase gene and dTDP-glucose 4,6-dehydratase gene through polymerase chain reaction. As the second step of the screening process, cell viability assay was performed in RAW264.7 cells to assess the toxicity of extracts. Among all the isolates, Streptomyces rochei strain VITGAP173 was subjected to further analysis. To explore the bioactivities, the organic solvent extraction method was utilized to extract the broth culture of VITGAP173. Inhibition of nitric oxide and cyclooxygenase enzymes upon lipopolysaccharide-induced inflammation were utilized to evaluate the anti-inflammatory efficacy, and the results showed the potency of VITGAP173 in a dose-dependent manner. The extract significantly suppressed the messenger RNA levels of the inflammatory mediators such as tumor necrosis factor-α and interleukin-6 induced by lipopolysaccharide in RAW264.7 macrophages. The presence of several chemical constituents was identified through gas chromatography-mass spectrometry analysis of VITGAP173 extract. To achieve the toxicity analysis, oral administration of VITGAP173 extract in Wistar albino rats was carried out to investigate the biochemical parameters, histopathology which revealed its nontoxic nature.  相似文献   

9.
Thirty-eight actinomycetes were isolated from sediment collected from the Mariana Trench (10,898 m) using marine agar and media selective for actinomycetes, notably raffinose-histidine agar. The isolates were assigned to the class Actinobacteria using primers specific for members of this taxon. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Dermacoccus, Kocuria, Micromonospora, Streptomyces, Tsukamurella and Williamsia. All of the isolates were screened for genes encoding nonribosomal peptide and polyketide synthetases. Nonribosomal peptide synthetase sequences were detected in more than half of the isolates and polyketide synthases type I (PKS-I) were identified in five out of 38 strains. The Streptomyces isolates produced several unusual secondary metabolites, including a PKS-I associated product. In initial testing for piezotolerance, the Dermacoccus strain MT1.1 grew at elevated hydrostatic pressures.  相似文献   

10.
The diversity and properties of actinobacteria, predominant residents in coral holobionts, have been rarely documented. In this study, we aimed to explore the species diversity, antimicrobial activities and biosynthetic potential of culturable actinomycetes within the tissues of the scleractinian corals Porites lutea, Galaxea fascicularis and Acropora millepora from the South China Sea. A total of 70 strains representing 13 families and 15 genera of actinobacteria were isolated. The antimicrobial activity and biosynthetic potential of fifteen representative filamentous actinomycetes were estimated. Crude fermentation extracts of 6 strains exhibited comparable or greater activities against Vibrio alginolyticus than ciprofloxacin. Seven of the 15 actinomycetes strains possess type I polyketide synthases (PKS-I) and/or nonribosomal peptide synthetases (NRPS) genes. Nine tested strains possess type II polyketide synthases (PKS-II). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these PKS and NRPS gene screening positive strains belong to genera Nocardiopsis, Pseudonocardia, Streptomyces, Micromonospora, Amycolatopsis and Prauserella. One PKS-I and four NRPS fragments showed <70 % similarity to their closest relatives, which suggested the novelty of these genes. This study helps uncover the genetic capacity of stony coral-associated actinomycetes to produce bioactive molecules.  相似文献   

11.
【目的】进一步了解兴义喀斯特洞穴可培养放线菌资源及产活性代谢产物的能力。【方法】选取多种分离培养基,利用稀释直接涂布平板法对贵州黔西南兴义市多个喀斯特洞穴的土壤和岩石进行可培养放线菌资源分离;利用三种发酵培养基对相关放线菌进行生物产物初筛。【结果】根据16S rRNA基因序列的比对分析,将分离得到的251株放线菌分别归类到44个属,其中链霉菌属(Streptomyces)占分离菌株的比例为24.30%,小单孢菌属(Micromonospora)占比11.95%,红球菌属(Rhodococcus)占比9.16%,微杆菌属(Microbacterium)占比7.17%,诺卡氏菌属(Nocardia)占比6.37%,该五类放线菌为该地区可培养放线菌的优势菌群。对70株细菌进行活性次级代谢产物筛选,其中35株放线菌对指示菌具有抑制活性,且主要类群为链霉菌属和小单孢菌属。【结论】贵州兴义喀斯特洞穴中存在丰富多样的放线菌类群,且蕴藏大量具有产生活性次级代谢产物能力的菌株,为医药产业提供潜力菌株资源,极具进一步发掘和研究的价值。  相似文献   

12.
Gram-positive bacteria, specifically actinobacteria and members of the order Bacillales, are well-known producers of important secondary metabolites. Little is known about the diversity of Gram-positive bacteria associated with Antarctic deep-sea sponges. In this study, cultivation-based approaches were applied to investigate the Gram-positive bacteria associated with the Antarctic sponges Rossella nuda, Rossella racovitzae (Porifera: Hexactinellida), and Myxilla mollis, Homaxinella balfourensis, Radiella antarctica (Porifera: Demospongiae). In total, 46 Gram-positive strains were cultured. Phylogenetic analysis revealed that 24 strains were affiliated with the Actinobacteria, including six genera Streptomyces, Nocardiopsis, Pseudonocardia, Dietzia, Brachybacterium, and Brevibacterium. The other 22 strains were affiliated with the Firmicutes, and among them two (V17-1 and V179-1) only shared 92–95% 16S rRNA gene sequence identity with the nearest type strain. To our knowledge, this is the first report on the isolation of strains belonging to genera Dietzia and Brevibacterium from Antarctic sponges. All of the 46 strains were PCR screened for genes encoding polyketide synthases (PKS), and a selection of 36 isolates were used in subsequent bioassay analyses. Eighty-eight percentage of the isolates that possess a PKS gene were active against at least one test organism. The study confirms the existence of diverse bacteria in Antarctic sponges and their potential for producing active compounds.  相似文献   

13.
The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (U1PKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding U1PKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A U1PKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRadsl, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located U1PKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UIPKS3 had six intervening introns and that UIPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.  相似文献   

14.
This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different "PKS-I-PKS-II-NRPS" combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.  相似文献   

15.
【目的】发掘具有开发前景的放线菌资源,对分离自新疆胀果甘草的内生放线菌的多样性、抗菌活性和次级代谢产物合成相关基因进行研究。【方法】采用5种培养基和3种前处理方法,从胀果甘草中分离获得80株放线菌。基于菌株形态学特征,对36株代表菌株进行抗菌活性检测,通过特异性引物扩增方法,检测了PKS I、PKS II、NPRS和卤化酶基因,探究其合成天然产物的潜在能力。结合筛选结果,选取其中20株代表菌,经16S r RNA基因测序,对其进行系统发育分析。【结果】培养基E2和E3结合热处理的分离效果较好;86.1%的代表菌株对供试的细菌、病原真菌表现出了不同程度的抗菌活性,PKS I、PKS II、NRPS基因和卤化酶基因阳性检出率分别为16.7%、72.2%、25.0%和11.1%。具有活性功能的代表菌株经16S r RNA基因测序分析,分别属于链霉菌属(Streptomyces)、小单胞菌属(Micromonospora)、红球菌属(Rhodococcus)和游动放线菌属(Actinoplanes)4个属,其中链霉菌属(Streptomyces)为优势菌属,占60%以上。【结论】胀果甘草是我国传统的药用植物,其植株内部蕴藏着丰富的放线菌资源,并在次生代谢产物合成方面拥有巨大潜力,具有进一步开发的价值。  相似文献   

16.
Acyltransferase (AT)-less type I polyketide synthases (PKSs) produce complex natural products due to the presence of many unique tailoring enzymes. The 3-hydroxy-3-methylglutaryl coenzyme A synthases (HCSs) are responsible for β-alkylation of the growing polyketide intermediates in AT-less type I PKSs. In this study, we discovered a large group of HCSs, closely associated with the characterized and orphan AT-less type I PKSs through in silico genome mining, sequence and genome neighbourhood network analyses. Using HCS-based probes, the survey of 1207 in-house strains and 18 soil samples from different geographic locations revealed the vast diversity of HCS-containing AT-less type I PKSs. The presence of HCSs in many AT-less type I PKSs suggests their co-evolutionary relationship. This study provides a new probe to study the abundance and diversity of AT-less type I PKSs in the environment and microbial strain collections. Our study should inspire future efforts to discover new polyketide natural products from AT-less type I PKSs.  相似文献   

17.
真菌苯二酚内酯类聚酮化合物具有抗癌和调节免疫系统等重要的生物活性,其生物合成是近年来的研究热点。介绍了苯二酚内酯的双聚酮合酶协作合成机制和组合生物合成,并以几种真菌苯二酚内酯生物合成途径为例,综述了相关的研究进展,以期为研究者提供参考。  相似文献   

18.
A cultivation-based approach was employed to compare the culturable actinobacterial diversity associated with five marine sponge species (Craniella australiensis, Halichondria rugosa, Reniochalina sp., Sponge sp., and Stelletta tenuis). The phylogenetic affiliation of the actinobacterial isolates was assessed by 16S rDNA-RFLP analysis. A total of 181 actinobacterial strains were isolated using five different culture media (denoted as M1–M5). The type of medium exhibited significant effects on the number of actinobacteria recovered, with the highest number of isolates on M3 (63 isolates) and the lowest on M1 (12 isolates). The genera isolated were also different, with the recovery of three genera on M2 and M3, and only a single genus on M1. The number of actinobacteria isolated from the five sponge species was significantly different, with a count of 83, 36, 30, 17, and 15 isolates from S. tenuis, H. rugosa, Sponge sp., Reniochalina sp., and C. australiensis, respectively. M3 was the best isolation medium for recovery of actinobacteria from S. tenuis, H. rugosa, and Sponge sp., while no specific medium preference was observed for the recovery of actinobacteria from Reniochalina sp., and C. australiensis. The RFLP fingerprinting of 16S rDNA genes digested with HhaI revealed six different patterns, in which 16 representative 16S rDNAs were fully sequenced. Phylogenetic analysis indicated that 12 strains belong to the group Streptomyces, three strains belong to Pseudonocardia, and one strain belongs to Nocardia. Two strains C14 (from C. australiensis) and N13 (from Sponge sp.) have only 96.26% and 96.27% similarity to earlier published sequences, and are therefore potential candidates for new species. The highest diversity of three actinobacteria genera was obtained from Sponge sp., though the number of isolates was low. Two genera of actinobacteria, Streptomyces, and Pseudonocardia, were isolated from both S. tenuis and C. australiensis. Only the genus of Streptomyces was isolated from H. rugosa and Reniochalina sp. Sponge species have been demonstrated here to vary as sources of culturable actinobacterial diversity, and the methods for sampling such diversity presented may be useful for improved sampling of such diversity.  相似文献   

19.
A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification–restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.  相似文献   

20.
This study describes the diversity and antibacterial activity of culturable actinobacteria isolated from five species of gorgonian corals (Echinogorgia aurantiaca, Melitodes squamata, Muricella flexuosa, Subergorgia suberosa, and Verrucella umbraculum) collected in shallow water of the South China Sea. A total of 123 actinobacterial isolates were recovered using ten different isolation media, and assigned to 11 genera, including Streptomyces and Micromonospora as the dominant genera, followed by Nocardia, Verrucosispora, Nocardiopsis, Rhodococcus, Pseudonocardia, Agrococcus, Saccharomonospora, Saccharopolyspora and Dietzia. Comparable analysis indicated that the numbers of actinobacterial genera and isolates from the five gorgonian coral species varied significantly. It was found that 72 isolates displayed antibacterial activity against at least one indicator bacterium, and the antibacterial strains isolated from different gorgonians had almost the same proportion (~50 %). These results provide direct evidence for the hypotheses that gorgonian coral species contain large and diverse communities of actinobacteria, and suggest that many gorgonian-associated actinobacteria could produce some antibacterial agents to protect their hosts against pathogens. To our knowledge, this is the first report about the diversity of culturable actinobacteria isolated from gorgonian corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号