首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heterologous gene expression system was created in a domestic Aspergillus awamori Co-6804 strain, which is a producer of the glucoamylase gene. Vector pGa was prepared using promoter and terminator areas of the glucoamylase gene, and A. niger phytase, Trichoderma reesei endoglucanase, and Penicillium canescens xylanase genes were then cloned into pGa vector. Separation of enzyme samples using FPLC showed the amount of the recombinant proteins to be within the 0.6-14% range of total protein.  相似文献   

2.
Based on morphological characteristics the taxa included in the Aspergillus aggregate can hardly be differentiated. For that reason the phylogeny of this genus was revised several times as different criteria, from morphological to later molecular, were used. We found, comparing nucleotide sequences of the ITS-region, that the strain Aspergillus niger (DSM 823) which is claimed to be identical to the strains ATCC 10577, IMI 027809, NCTC 7193 and NRRL 2322 can be molecularly classified as Aspergillus tubingensis, exhibiting 100% identity with the A. tubingensis CBS strains 643.92 and 127.49. We amplified, cloned and sequenced a new glucoamylase gene (glaA) from this strain of A. tubingensis (A. niger DSM 823) using primers derived from A. niger glucoamylase G1. The amplified cDNA fragment of 2013 bp contained an open reading frame encoding 648 amino acid residues. The calculated molecular mass of the glucoamylase, deduced from the amino acid sequence, was 68 kDa. The nucleotide sequence of glaA showed 99% similarity with glucoamylases from Aspergillus kawachii and Aspergillus shirousami, whereas the similarity with the glucoamylase G1 from A. niger was 92% An erratum to this article is available at .  相似文献   

3.

Background  

The filamentous fungus Aspergillus niger is well-known as a producer of primary metabolites and extracellular proteins. For example, glucoamylase is the most efficiently secreted protein of Aspergillus niger, thus the homologous glucoamylase (glaA) promoter as well as the glaA signal sequence are widely used for heterologous protein production. Xylose is known to strongly repress glaA expression while maltose is a potent inducer of glaA promoter controlled genes. For a more profound understanding of A. niger physiology, a comprehensive analysis of the intra- and extracellular proteome of Aspergillus niger AB1.13 growing on defined medium with xylose or maltose as carbon substrate was carried out using 2-D gel electrophoresis/Maldi-ToF and nano-HPLC MS/MS.  相似文献   

4.
It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF™ proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50°C, pH 4, and specific activity of 12.34 U mg of total protein−1 under the conditions, using diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl (1→2)]-β-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin. This project was supported by the National Natural Science Foundation of China (NSFC; 30572333).  相似文献   

5.
Test sake fermentation was carried out using an Aspergillus oryzae transformant (TF2–5) which had the glucoamylase gene from Aspergillus shirousamii RIB2504. The fermentation progressed rapidly due to high glucoamylase activity, and the steamed rice rapidly dissolved in the moromi-mash. Consequently, the total alcohol yield increased. In addition, the obtained sake had a moderate sweetness and a rich fruity flavor.  相似文献   

6.
α-Amylase cDNA was cloned and sequenced from Aspergillus shirousamii RIB2504. The putative protein deduced from the cDNA open reading frame (ORF) consisted of 499 amino acids with a molecular weight of 55,000. The amino acid sequence was identical to that of the ORF of the Taka-amylase A gene of Aspergillus oryzae, while the nucleotide sequence was different at two and six positions in the cDNA ORF and 3? non-coding regions, respectively, so far determined. The α-amylase cDNA was expressed in Saccharomyces cerevisiae under the control of the yeast ADH1 promoter using a YEp-type plasmid, pYcDE1. The cDNA of glucoamylase, which was previously cloned from the same organism, was also expressed under the same conditions. Consequently, active α-amylase and glucoamylase were efficiently secreted into the culture medium. The amino acid sequence of the N-terminal regions of these enzymes purified from the yeast culture medium confirmed that the signal sequences of these enzymes were cleaved off at the same positions as those of the native enzymes of A. shirousamii.  相似文献   

7.
To develop a strain of Saccharomyces cerevisiae that produces ethanol directly from starch, two integrative vectors were constructed to allow the simultaneous multiple integration of the Aspergillus awamori glucoamylase gene (GA1) and the Debaryomyces occidentalis α-amylase gene (AMY) and glucoamylase with debranching activity gene (GAM1) into the chromosomes of an industrial strain of S. cerevisiae. The GA1 and AMY genes were constitutively expressed under the ADC1 promoter in S. cerevisiae using the double δ-integration system. The GAM1 gene was constitutively expressed under the corresponding promoter using the double 18S rDNA-integration system. The recombinant industrial strain secreting biologically active α-amylase, glucoamylase and debranching enzyme was able to ferment starch to ethanol in a single step. The new strain produced 8% (v/v) ethanol (62.8 g l−1) from 20% (w/v) soluble starch after 2 days, fermentation.  相似文献   

8.
Fusarium venenatum A3/5 was transformed using the Aspergillus niger expression plasmid, pIGF, in which the coding sequence for the F. solani f. sp. pisi cutinase gene had been inserted in frame, with a KEX2 cleavage site, with the truncated A. niger glucoamylase gene under control of the A. niger glucoamylase promoter. The transformant produced up to 21 U cutinase l−1 in minimal medium containing glucose or starch as the primary carbon source. Glucoamylase (165 U l−1 or 8 mg l−1) was also produced. Both the transformant and the parent strain produced cutinase in medium containing cutin.  相似文献   

9.
An extracellular glucoamylase produced by Paecilomyces variotii was purified using DEAE-cellulose ion exchange chromatography and Sephadex G-100 gel filtration. The purified protein migrated as a single band in 7% PAGE and 8% SDS-PAGE. The estimated molecular mass was 86.5 kDa (SDS-PAGE). Optima of temperature and pH were 55 °C and 5.0, respectively. In the absence of substrate the purified glucoamylase was stable for 1 h at 50 and 55 °C, with a t 50 of 45 min at 60 °C. The substrate contributed to protect the enzyme against thermal denaturation. The enzyme was mainly activated by manganese metal ions. The glucoamylase produced by P. variotii preferentially hydrolyzed amylopectin, glycogen and starch, and to a lesser extent malto-oligossacarides and amylose. Sucrose, p-nitrophenyl α-d-maltoside, methyl-α-d-glucopyranoside, pullulan, α- and β-cyclodextrin, and trehalose were not hydrolyzed. After 24 h, the products of starch hydrolysis, analyzed by thin layer chromatography, showed only glucose. The circular dichroism spectrum showed a protein rich in α-helix. The sequence of amino acids of the purified enzyme VVTDSFR appears similar to glucoamylases purified from Talaromyces emersonii and with the precursor of the glucoamylase from Aspergillus oryzae. These results suggested the character of the enzyme studied as a glucoamylase (1,4-α-d-glucan glucohydrolase).  相似文献   

10.
Increase in the expression level of amylolytic genes activator protein encoded by amyR gene was shown to result in enhancement of glucoamylase productivity of A. awamori strain by 30%. However, the same effect equal to 30% increase can be achieved by introduction of extra copies of gla gene encoding glucoamylase. These two effects were not additive, which gave the possibility to suggest an additional limitation in the regulation mechanism of glucoamylase gene expression in A. awamori strain while introducing an additional copies of amyR and gla genes.  相似文献   

11.
Kim HR  Im YK  Ko HM  Chin JE  Kim IC  Lee HB  Bai S 《Biotechnology letters》2011,33(8):1643-1648
Industrial strains of a polyploid, distiller’s Saccharomyces cerevisiae that produces glucoamylase and α-amylase was used for the direct fermentation of raw starch to ethanol. Strains contained either Aspergillus awamori glucoamylase gene (GA1), Debaryomyces occidentalis glucoamylase gene (GAM1) or D. occidentalis α-amylase gene (AMY), singly or in combination, integrated into their chromosomes. The strain expressing both GA1 and AMY generated 10.3% (v/v) ethanol (80.9 g l−1) from 20% (w/v) raw corn starch after 6 days of fermentation, and decreased the raw starch content to 21% of the initial concentration.  相似文献   

12.
Summary The capacity to saccharify barley grain mash of Hormoconis resinae glucoamylase P produced by a heterologous host, Trichoderma reesei, was compared with that of Aspergillus niger glucoamylase. The results showed that the glucoamylase P secreted by T. reesei produces more fermentable sugars from mash and thus makes a higher ethanol yield possible in fermentation.  相似文献   

13.
A glucoamylase gene has been cloned from a Rhizopus genomic DNA library using synthetic oligonucleotides corresponding to the amino acid sequence of the glucoamylase. Since this glucoamylase gene was not expressed in yeast cells, we have cloned a glucoamylase gene from a cDNA library prepared from Rhizopus mRNA. Sequence analysis of both glucoamylase genes revealed that the genomic gene contained 4 intervening sequences and the cDNA gene lacked 145 nucleotides corresponding to the N-terminal region. The glucoamylase consists of 604 amino acids including a putative signal peptide and its molecular weight was calculated to be 65,000. The glucoamylase gene to be expressed in yeast cells was constructed by recombination of both genes. The yeast cells containing this constructed glucoamylase gene secreted the glucoamylase into the culture fluid and grew at almost the normal rate on a medium containing starch as the sole carbon source.  相似文献   

14.
Starch degrading enzymes, viz., β-amylase, glucoamylase, and pullulanase, were purified using magnetite-alginate beads. In each case, the enzyme activity was eluted by using 1.0 M maltose. β-Amylase (sweet potato), glucoamylase (Aspergillus niger), and pullulanase (Bacillus acidopullulyticus) from their crude preparations were purified 37-, 31-, and 49-fold with 86, 87, and 95% activity recovery, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis showed single band in each case.  相似文献   

15.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R. oryzae glucoamylase, had the highest glucoamylase activity on its cell surface.  相似文献   

16.
Glucoamylase is an industrially extremely important enzyme in the fermentative production of ethanol, used in the enzymatic conversion of starch into high glucose and fructose syrups. The aim of this study is to construct a Rhizopus arrhizus glucoamylase gene (RaGA)—introns artificially spliced by PCR—suitable for expression in S. cerevisiae host and tried expressing in Picha pastoris. In previous work, we failed in amplifying glucoamylase gene from R. arrhizus by RT-PCR, so several primers were designed to splicing the introns by PCR in vitro. Sequence analysis shown that all introns in the RaGA were deleted correctly and no mutant was induced in the extrons compared with the RaGA gene originally cloned. The RaGA gene artificially constructed was transferred into P. pastoris integrative expression vectors pPIC9 (containing а-factor). Consequently, the plasmids pPIC9-RaGA was lineared by SacI and inserted into P. pastoris GS115 (His) genome downstream of the 5′AOX1 promoter by the method of electroporation. Induction by 0.75% methanol for 72 h led to synthesis of secreted glucoamylase. So it is demonstrated that the glucoamylase gene has been expressed in and secreted from P. pastoris.  相似文献   

17.
【目的】建立对糖化酶生产菌种黑曲霉随机突变文库进行筛选的方法,以获得糖化酶酶活提高的突变菌株。【方法】以一株可产糖化酶的黑曲霉菌株Aspergillus niger X1为出发菌株,经硫酸二乙酯诱变获得突变文库,采用葡萄糖的结构类似物——2-脱氧葡萄糖进行筛选,并在筛选过程中逐渐提高2-脱氧葡萄糖浓度,定向选育具有2-脱氧葡萄糖抗性、高产糖化酶的突变株。【结果】获得的高产突变菌株DG36摇瓶发酵糖化酶产量比出发菌株A.niger X1提高22.2%–33.8%,经工业水平50 m~3罐发酵测试,突变株DG36发酵128 h糖化酶活可达49094 U/m L,在相同发酵时间内,其酶活较出发菌株A.niger X1提高32.8%,发酵时间缩短16.9%。【结论】本研究开发了一种以2-脱氧葡萄糖为抗性标记选育高产糖化酶突变株的方法,所得突变株DG36遗传性状稳定,与出发菌相比具有菌丝粗壮、产酶期提前、糖化酶活高、发酵时间短、有利于发酵后处理的优点。  相似文献   

18.
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40°C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0–5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0–9.5. The temperature optimum was 65°C and retained 100% activity after 240 min at 60°C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K m was calculated as 0.32 mg ml−1. Circular dichroism spectroscopy estimated a secondary structure content of 33% α-helix, 17% β-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.  相似文献   

19.
Summary Optimal conditions for the production of glucoamylase from rice bran usingAspergillus terreus in stationary culture were a medium containing 20 g rice bran/l, 0.3% (w/v) (NH4)2SO4 and 0.2% (w/v) peptone at 30°C with an initial pH of 3.0. Enzymatic activity was maximal after 4 d. Glucose was the major reducing sugar produced by hydrolysis of starch. Carbohydrates favouring induction of glucoamylase were, in order: maltose, starch, cellobiose, lactose, glucose, fructose and galactose. Amino acids, in particular glycine, lysine, isoleucine and histidine, were vital for glucoamylase synthesis. Tween 80 and Triton X-100 enhanced the growth but suppressed glucoamylase synthesis.
Conditions de culture pour la production de glucoamylase à partir de son de riz parAspergillus terreus
Résumé Les conditions optimales pour la production de glucoamylase à partir de son de riz en utilisantAspergillus terreus en culture en état stationnaire, consistent en un milieu contenant 20 g de son de riz par litre, 0.3 % (poids/vol.) de (NH4)2 SO4 et 0.2 % (poids/vol.) de peptone, à 30 °C avec un pH initial de 3.0. L'activité enzymatique est maximum après 4 jours. Le glucose est le principal sucre réducteur produit par hydrolyse de l'amidon. Les hydrates de carbone qui favorisent l'induction de la glucoamylase, sont, dans l'ordre: le maltose, l'amidon, la cellobiose, le lactose, le glucose, le fructose et le galactose. Les acides aminés, en particulier la glycine, la lysine, l'isoleucine et l'histidine sont vitales pour la synthèse de glucoamylase. Le tween 80 et le triton X-100 augmentent la croissance mais suppriment la synthèse de glucoamylase.
  相似文献   

20.
A gene encoding an intracellular glucoamylase was identified in the genome of the extreme thermoacidophilic Archaeon Thermoplasma acidophilum. The gene taGA, consisting of 1,911 bp, was cloned and successfully expressed in Escherichia coli. The recombinant protein was purified 22-fold to homogeneity using heat treatment, anion-exchange chromatography, and gel filtration. Detailed analysis shows that the glucoamylase, with a molecular weight of 66 kDa per subunit, is a homodimer in its active state. Amylolytic activity was measured over a wide range of temperature (40–90°C) and pH (pH 3.5–7) and was maximal at 75°C and at acidic condition (pH 5). The recombinant archaeal glucoamylase uses a variety of polysaccharides as substrate, including glycogen and amylose. Maximal activity was measured towards amylopectin with a specific activity of 4.2 U/mg and increased almost threefold in the presence of manganese. Calcium ions have a pronounced effect on enzyme stability; in the presence of 5 mM CaCl2, the half-life increased from 15 min to 2 h at 80°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号