首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 hours, which allowed extraction of 40.6% of copper. At subsequent chemical leaching at 80°C during 7 hours with a solution of ferric sulfate obtained after biooxidation by an association of micro-organisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 hours). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea Ferroplasma acidiphilum, at 1.0 g/L h at 40°C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A flowsheet scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.  相似文献   

2.
The composition was studied of the microbial association involved in tank biooxidation of the concentrate of a refractory pyrrhotite-containing pyrite-arsenopyrite gold-arsenic ore from the Olympiadinskoe deposit at 50°C. The two Sulfobacillus thermosulfidooxidans strains predominant in the association were phylogenetically different from the strains used as inocula. The isolates were found to differ significantly both from each other and from the strains that dominated in the processes of biooxidation of a similar concentrate by traditional tank technology at 39°C or at 39°C with treatment of the concentrate with ferric iron prior to biooxidation. These results indicate the strain and species diversity of sulfobacilli in microbial associations involved in biooxidation of the concentrates under different technological modes.  相似文献   

3.
In the process of biooxidation at 39°C in a continuous mode of the gold-arsenic concentrate from the Olympiadinskoe deposit, which was pretreated by chemical leaching with ferric ions, by a microbial association from the BIO department reactors of the Polyus gold mining company, a bacterial culture designated as strain HT-4 was isolated. The bacterium was a spore-forming rod 0.5–0.6 × 1.4–2.0 μm with a flagellum. The optimal temperature for growth and Fe2+ oxidation was 55°C. The strain grew in the pH range from 1.21 to 2.10 with the optimum at pH 1.6. The organism was incapable of lithotrophic and organotrophic growth. It grew mixotrophically by Fe2+ oxidation in the presence of 0.02% yeast extract. The DNA G+C base content was 48.6 mol %. Based on comparative phylogenetic analysis of 1472-bp nucleotide sequences of 16S rRNA genes, strain HT-4 was classified as Sulfobacillus thermosulfidooxidans. Analysis by pulse-field gel electrophoresis revealed a unique profile of the NotI fragments of the chromosomal DNA. These results demonstrate the strain and species diversity of sulfobacilli in microbial associations involved in biooxidation of concentrates in different technological conditions. The strain “S. olympiadicus S-5” dominated in the process of biooxidation of original concentrate not treated with ferric iron, while S. thermosulfidooxidans HT-4 was predominant in biooxidation of the chemically leached concentrate.  相似文献   

4.
Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40–50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.  相似文献   

5.
Biooxidation of copper-zinc concentrate with the use of consortia of mesophilic and moderately thermophilic acidophilic chemolithotrophic microorganisms was studied. Pyrrhotite, sphalerite, and chalcopyrite were the main sulfide minerals of the concentrate. The possibility in principal of complete selective leaching of zinc from sulfide concentrate coupled with minimal recovery of copper (less than 20%) was demonstrated. Selective leaching of zinc could be caused by galvanic interactions between minerals of the concentrate during the biooxidation. The results can be used as the basis for the development of the technologies for production of grade copper concentrate not containing zinc from sulfide copper-zinc concentrate obtained from refractory ores.  相似文献   

6.
The present study investigated the cultivable mesophilic (37°C) and thermophilic (60°C) cellulose-degrading bacterial diversity in a weathered soil-like sample collected from the deep subsurface (1.5 km depth) of the Homestake gold mine in Lead, South Dakota, USA. Chemical characterization of the sample by X-ray fluorescence spectroscopy revealed a high amount of toxic heavy metals such as Cu, Cr, Pb, Ni, and Zn. Molecular community structures were determined by phylogenetic analysis of 16S rRNA gene sequences retrieved from enrichment cultures growing in presence of microcrystalline cellulose as the sole source of carbon. All phylotypes retrieved from enrichment cultures were affiliated to Firmicutes. Cellulose-degrading mesophilic and thermophilic pure cultures belonging to the genera Brevibacillus, Paenibacillus, Bacillus, and Geobacillus were isolated from enrichment cultures, and selected cultures were studied for enzyme activities. For a mesophilic isolate (DUSELG12), the optimum pH and temperature for carboxymethyl cellulase (CMCase) were 5.5 and 55°C, while for a thermophilic isolate (DUSELR7) they were 5.0 and 75°C, respectively. Furthermore, DUSELG12 retained about 40% CMCase activity after incubation at 60°C for 8 h. Most remarkably, thermophilic isolate, DUSELR7 retained 26% CMCase activity at 60°C up to a period of 300 h. Overall, the present work revealed the presence of different cellulose-degrading bacterial lineages in the unique deep subsurface environment of the mine. The results also have strong implications for biological conversion of cellulosic agricultural and forestry wastes to commodity chemicals including sugars.  相似文献   

7.
Effectiveness of different pure and mixed cultures of three moderately thermophilic, extremely acidophilic bacterial strains (Acidimicrobium ferrooxidans ICP, Sulfobacillus sibiricus N1, Acidithiobacillus caldus KU) were investigated for biooxidation of highly refractory polymetallic gold ore concentrates. Despite of its complex mineralogy and the presence of a mixture of potentially inhibitory metals and metalloids, the concentrate was readily dissolved in defined mixed cultures including both iron and sulfur oxidizers, releasing as much as 80% of soluble Fe and 61% of soluble As. Factors to affect microbial mineral dissolution efficiencies (i.e. microbial As(III) oxidation ability, formation of secondary mineral precipitation (e.g. jarosite, elemental sulfur, scorodite, anglesite), and microbial population dynamics during biooxidation) were studied, based on which roles of individual microbes and their synergistic interactions during biooxidation were discussed. Applying the biooxidation pretreatment using the most efficient mixed cultures containing all three strains significantly improved the recovery of both Au (from 1.1% to 86%) and Ag (from 3.2% to 87%). Finally, this study provides one of the very few available comparisons of the effectiveness of different pretreatment techniques for refractory gold ore concentrates: Compared with other abiotic pretreatment approaches (roasting, pressure oxidation, and alkali dissolution), biooxidation was shown to be one of the most effective options in terms of the recovery of Au and Ag.  相似文献   

8.
Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45°C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40°C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45°C was 89.34, 94.59, and 83.25%, respectively. At 40°C, the highest number of microbial cells (6.01 × 109 cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities (except for the absence of Leptospirillum ferriphilum at 35°C), the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40°C.  相似文献   

9.
A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, giving SisEstA. Upon Escherichia coli expression, only the thioredoxin-tagged EstA recombinant protein was soluble. The fusion protein was then purified, and removing the protein tag yielded EcSisEstA. Both forms of the thermophilic EstA enzyme were characterized. We found that SisEstA formed dimer exclusively in solution, whereas EcSisEstA appeared solely as monomer. The former exhibited a stronger resistance to organic solvents than the latter in general, having a much higher temperature optimum (90°C vs. 65°C). More strikingly, SisEstA exhibited a half-life that was more than 32-fold longer than that of EcSisEstA at 90°C. This indicated that thermophilic enzymes yielded from homologous expression should be better biocatalysts than those obtained from mesophilic expression.  相似文献   

10.
A study of the effect of temperature and pH on the kinetics of methane production and organic nitrogen and phosphorus degradation in the anaerobic digestion process of cattle manure was carried out. Two laboratory-scale batch completely mixed reactors, operating at 35v°C (mesophilic temperature), and other two, operating at 60v°C (thermophilic temperature) were used. For each temperature selected, the influent pH values were 7.6 (initial pH of the waste used) and 7.0. The apparent kinetic constants of the biomethanization process increased 2.3 times when the initial pH of the influent was increased from 7.0 to 7.6 at mesophilic temperature. The values found at thermophilic temperature were similar. The kinetic constants of methane production decreased 2.6 and 7.2 times when the operating temperature increased from 35 °C to 60v°C for the experiments carried out at initial pH of 7.0 and 7.6, respectively. The methane yield coefficient (l CH4 STP/g VS removed) also decreased when the temperature increased from 35v°C to 60v°C for the two initial pH values studied. This behaviour agreed with the major inhibition level observed at thermophilic temperature as a result of the higher organic nitrogen removal and ammonia nitrogen production observed at 60v°C. Specifically, the specific rate constants for organic nitrogen removal and ammonia nitrogen production increased 3.6 and 12 times when the temperature was increased from 35v°C to 60v°C for the experiments carried out at initial pH values of 7.0 and 7.6, respectively. In the same way, the values of the kinetic constant for phosphorus removal were 44% and 80% higher than those obtained at 35v°C for the two initial pH values above-mentioned, respectively. Finally, the experimental values of organic nitrogen and phosphorus concentrations were reproduced with deviations equal to or less than 10% and 15% in every case, respectively.  相似文献   

11.
Summary Fast start-up of thermophilic upflow anaerobic sludge bed (UASB) reactors was achieved at process temperatures of 46, 55 and 64° C, using mesophilic granular sludge as inoculum and fatty acid mixtures as feed. The start-up was brought about by increasing the temperature of mesophilic UASB reactors in a single step, which initially led to a sharp drop in the methane production rate. Thereafter, stable thermophilic methanogenesis was achieved within a period of 1 or 2 weeks depending on the temperature of operation. Mesophilic granules functioned initially as effective carrier material for thermophilic organisms. However, long-term operation led to disintegration of the granules, resulting in wash-out of thermophilic biomass. The temperature optima for acetotrophic methanogenic activity of the sludges cultivated at 46, 55 and 64° C, were similar, but differed significantly from the temperature optimum of the mesophilic inoculum. All the sludges examined were dominated by Methanothrix-like rods. These could be distinguished by antigenic fingerprinting into two subpopulations, one predominant at 36° C and the other predominant at 46° C and above. Offprint requests to: J. B. van Lier  相似文献   

12.

Objectives

To assess the effect of one-step temperature increase, from 35 to 55 °C, on the methane production of a mesophilic granular sludge (MGS) treating wine vinasses and the effluent of a hydrogenogenic upflow anaerobic sludge blanket (UASB) reactor.

Results

One-step temperature increase from mesophilic to thermophilic conditions improved methane production regardless of the substrate tested. The biomethane potentials obtained under thermophilic conditions were 1.8–2.9 times higher than those obtained under mesophilic conditions. The MGS also performed better than an acclimated thermophilic digestate, producing 2.2–2.5 times more methane than the digestate under thermophilic conditions. Increasing the temperature from 35 to 55 °C also improved the methane production rate of the MGS (up to 9.4 times faster) and reduced the lag time (up to 1.9 times). Although the temperature increase mediated a decrease in the size of the sludge granules, no negative effects on the performance of the MGS was observed under thermophilic conditions.

Conclusions

More methane is obtained from real agroindustrial effluents at thermophilic conditions than under mesophilic conditions. One-step temperature increase (instead of progressive sequential increases) can be used to implement the thermophilic anaerobic digestion processes with MGS.
  相似文献   

13.
To enrich syntrophic acetate‐oxidizing bacteria (SAOB), duplicate chemostats were inoculated with sludge from syntrophic acetate oxidation (SAO)‐dominated systems and continuously supplied with acetate (0.4 or 7.5 g l?1) at high‐ammonia levels. The chemostats were operated under mesophilic (37°C) or thermophilic (52°C) temperature for about six hydraulic retention times (HRT 28 days) and were sampled over time. Irrespective of temperature, a methane content of 64–69% and effluent acetate level of 0.4–1.0 g l?1 were recorded in chemostats fed high acetate. Low methane production in the low‐acetate chemostats indicated that the substrate supply was below the threshold for methanization of acetate via SAO. Novel representatives within the family Clostridiales and genus Syntrophaceticus (class Clostridia) were identified to represent putative SAOB candidates in mesophilic and thermophilic conditions respectively. Known SAOB persisted at low relative abundance in all chemostats. The hydrogenotrophic methanogens Methanoculleus bourgensis (mesophilic) and Methanothermobacter thermautotrophicus (thermophilic) dominated archaeal communities in the high‐acetate chemostats. In line with the restricted methane production in the low‐acetate chemostats, methanogens persisted at considerably lower abundance in these chemostats. These findings strongly indicate involvement in SAO and tolerance to high ammonia levels of the species identified here, and have implications for understanding community function in stressed anaerobic processes.  相似文献   

14.
The thermophilic bacterial strain MP4 assigned to a new species, likely of the genus Alicyclobacillus, was isolated from geothermal soils on the NW slope of Mount Melbourne, Antarctica. These soils have high iron concentrations and the strain MP4 requires iron additions for growth. Four mesophilic bacterial strains Paenibacillus validus MP5, MP8, and MP10, and P. apiarius MP7, isolated from the same site, need iron supply for growth depending on the medium. Growth temperature of thermophilic strain ranges from 42 to 70 °C, and that one of mesophiles from 25 to 44 °C. Thermophilic and mesophilic strains shared microenvironments with temperature of 42–44 °C and showed optima of pH values ranging from 5.5 to 6.0. The thermophilic strain MP4 reached values of 106 CFU ml−1 in aqueous soil extract from the NW slope of Mt. Melbourne, and 105 CFU ml−1 in water extracts from other geothermal Antarctic areas (Mt. Rittmann and Cryptogam Ridge). Growth of thermophilic bacteria in aqueous extracts of the NW slope of Mount Melbourne soils caused a reduction of 50% of soluble iron content, which was recovered in bacterial biomass. These results suggest a possible involvement of the thermophilic strain MP4 in iron bioavailability in these geothermal soils.  相似文献   

15.
Summary Bacillus stearothermophilus was adapted to grow at 55°C and 37°C in a complex medium with almost equivalent yields in cell mass. In both temperature ranges the maximum specific growth rates (μmax) were identical. Cellular extracts of this bacterium showed remarkable differences in the activity levels of several enzymes, depending on the respective growth temperature. High activities of glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase were observed in bacteria from thermophilic cultures (55°C) and the respiratory quotient exceeded 1.0. Under anaerobic conditions at 55°C μmax was the same as in aerobic cultures. No alcohol dehydrogenase was detected in cells from mesophilic cultures (37°C), however, and the level of glyceraldehyde-3-phosphate dehydrogenase was also extremely low under mesophilic conditions. Succinate dehydrogenase and isocitrate dehydrogenase activity appeared to be higher in bacteria grown at 37°C; the resspiratory quotient was always lower than 1.0. At 37°C, acetoin formation was observed regularly, a fermentation product which was never detected in 55°C-cultures. Under anaerobic conditions at 37°C a very low growth rate was found. When adapted to grow at 37°C or 55°C,B. stearothermophilus is apparently able to use different catabolic systems.  相似文献   

16.
It is well known that pulp density and particle size determine the available surface area concentration and have an influence in the overall rate of bioleaching of minerals. As metal solubilization takes place through the surface area of the particles, it can be expected that different combinations of pulp densities and particle sizes giving the same surface area concentration would determine the same leaching rate. The objective of this work was to test this hypothesis on the effect of surface area concentration, pulp density and particle size of the biooxidation of a pyritic gold concentrate by the thermophilic Archaeon Sulfolobus metallicus in shake flasks. The gold concentrate was used at 2.5%, 5%, 10%, and 15% w/v pulp density and at four size fractions: 150–106, 106–75, 75–38 and –38 μm. Temperature was 68°C and the initial pH was 2.0. Results showed that the volumetric productivities of iron and sulfate depend not only on the surface area concentration but also on pulp density and particle size considered separately. These two variables not only determine surface area but also exert additional effects on the process, so the hypothesis was not confirmed. Maximum attained iron productivity was 1.042 g/l day with the 75–38 μm fraction at 5% pulp density. Maximum sulfate productivity was 4.279 g/l day with the 75–38 μm fraction at 10% pulp density.  相似文献   

17.
Aim: To determine the minimal conditions (temperature–time), necessary to achieve set sanitation targets for selected microbial indicators during the continuous thermal treatment of pig slurry. Methods and Results: The effectiveness of thermal treatment between 55 and 96°C was studied using Escherichia coli, enterococci, sulfite‐reducing Clostridia (SRC), mesophilic culturable bacteria (MCB), F+‐specific and somatic phages. Identification of SRC and MCB was performed using 16S rRNA gene analysis. Ten minutes at 70°C or 1 h at 60°C was sufficient to reduce the vegetative bacteria by 4–5 log10, but it had little effect on somatic phages nor on spore formers, dominated by Clostridium sp. At 96°C, somatic phages were still detected, but there was a reduction of 3·1 log10 for SRC and of 1·4 log10 for MCB. At 96°C, Clostridium botulinum was identified among the thermotolerant MCB. Conclusion: Only those hygienic risks relating to mesophilic vegetative bacteria can be totally eliminated from pig slurry treated at 60°C (60 min) or 70°C (<10 min). Significance and Impact of the Study: Hygiene standards based on the removal of the indicators E. coli and enterococci can easily be met by treatment as low as 60°C (enabling, a low‐cost treatment using heat recovery). However, even at 96°C, certain pathogens may persist.  相似文献   

18.
The wet organic fraction of household wastes was digested anaerobically at 37 °C and 55 °C. At both temperatures the volatile solids loading was increased from 1 g l−1 day−1 to 9.65 g l−1 day−1, by reducing the nominal hydraulic retention time from 93 days to 19 days. The volatile solids removal in the reactors at both temperatures for the same loading rates was in a similar range and was still 65% at 19 days hydraulic retention time. Although more biogas was produced in the thermophilic reactor, the energy conservation in methane was slightly lower, because of a lower methane content, compared to the biogas of the mesophilic reactor. The slightly lower amount of energy conserved in the methane of the thermophilic digester was presumably balanced by the hydrogen that escaped into the gas phase and thus was no longer available for methanogenesis. In the thermophilic process, 1.4 g/l ammonia was released, whereas in the mesophilic process only 1 g/l ammonia was generated, presumably from protein degradation. Inhibition studies of methane production and glucose fermentation revealed a K i (50%) of 3 g/l and 3.7 g/l ammonia (equivalent to 0.22 g/l and 0.28 g/l free NH3) at 37 °C and a K i (50%) of 3.5 g/l and 3.4 g/l ammonia (equivalent to 0.69 g/l and 0.68 g/l free NH3) at 55 °C. This indicated that the thermophilic flora tolerated at least twice as much of free NH3 than the mesophilic flora and, furthermore, that the thermophilic flora was able to degrade more protein. The apparent ammonia concentrations in the mesophilic and in the thermophilic biowaste reactor were low enough not to inhibit glucose fermentation and methane production of either process significantly, but may have been high enough to inhibit protein degradation. The data indicated either that the mesophilic and thermophilic protein degraders revealed a different sensitivity towards free ammonia or that the mesophilic population contained less versatile protein degraders, leaving more protein undegraded. Received: 26 March 1997 / Received revision: 13 May 1997 / Accepted: 19 May 1997  相似文献   

19.
The main objective of the present study was to investigate the continuous bioleaching of chalcopyrite concentrate at a high pulp density by moderate thermophilic microorganisms. Using a flotation concentrate containing 46% chalcopyrite and 23% pyrite, bioleaching tests were carried out at a high pulp density (15%) and temperature of 47°C using a setup consisting of three continuous stirred tank bioreactors in series. A two-level full factorial design of experiments was used to assess the effects of residence time, particle size and acidity of the leaching solution on the copper recovery. From the results of these tests, we concluded that under the best process conditions (d80 = 30 μm, T = 47°C, and acidity of 130 kg/ton) more than 54% of copper was extracted from the concentrate after 7 days. Also, the concentration of copper in the final solution was higher than 20 g/L.  相似文献   

20.
Industrially, the use of high temperatures (40–60°C) in the l-malate production process could result in rapid inactivation of the mesophilic fumarases, warranting constant replenishment of the biocatalyst. Thus, a thermostable fumarase C that is active and stable at high temperatures would be ideal. Biochemical studies using recombinant fumarase C from thermophilic Streptomyces thermovulgaris (stFUMC) indicated that it was optimally active at 50°C and highly stable even after 24 h of incubation at 40°C. The same gene from mesophilic Streptomyces coelicolor (scfumC) was also cloned and expressed as soluble proteins for comparison in thermal properties of both enzymes. In contrast to stFUMC, scFUMC exhibited a lower temperature optima of 30°C and was rapidly denatured at 50°C. The specific activity of stFUMC was also higher than that of scFUMC by 20-fold. After primary sequence comparison, three hydrophilic amino acid residues, R163, E170 and S347, were forged into the thermolabile scFUMC either singly or in combination for the investigation of their contributions in the thermal properties of the mutant enzymes. Of the mutants studied, the A347S scFUMC mutant resulted in the highest increase in optimum temperature of 10°C and a fourfold enhancement in specific activity. G163R/G170E and G163R/G170E/A347S scFUMC mutants are more thermostable than wild-type scFUMC. These findings support stFUMC as a highly efficient, thermostable fumarase C with industrial potential and suggest that R163, E170 and S347 are involved in the enhancement of thermal properties in fumarase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号