首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The facultative phototroph Rhodobacter capsulatus takes up the highly toxic oxyanion tellurite when grown under both photosynthetic and respiratory growth conditions. Previous works on Escherichia coli and R. capsulatus suggested that tellurite uptake occurred through a phosphate transporter. Here we present evidences indicating that tellurite enters R. capsulatus cells via a monocarboxylate transport system. Indeed, intracellular accumulation of tellurite was inhibited by the addition of monocarboxylates such as pyruvate, lactate and acetate, but not by dicarboxylates like malate or succinate. Acetate was the strongest tellurite uptake antagonist and this effect was concentration dependent, being already evident at 1 μM acetate. Conversely, tellurite at 100 μM was able to restrict the acetate entry into the cells. Both tellurite and acetate uptakes were energy dependent processes, since they were abolished by the protonophore FCCP and by the respiratory electron transport inhibitor KCN. Interestingly, cells grown on acetate, lactate or pyruvate showed a high level resistance to tellurite, whereas cells grown on malate or succinate proved to be very sensitive to the oxyanion. Taking these data together, we propose that: (a) tellurite enters R. capsulatus cells via an as yet uncharacterized monocarboxylate(s) transporter, (b) competition between acetate and tellurite results in a much higher level of tolerance against the oxyanion and (c) the toxic action of tellurite at the cytosolic level is significantly restricted by preventing tellurite uptake.  相似文献   

2.
Summary.  Anaerobically light-grown cells of Rhodobacter capsulatus B100 are highly resistant to the toxic oxyanion tellurite (TeO3 2−; minimal inhibitory concentration, 250 μg/ml). This study examines, for the first time, some structural and biochemical features of cells and plasma membrane fragments of this facultative phototroph grown in the presence of 50μg of K2TeO3 per ml. Through the use of transmission microscopy and X-ray microanalysis we show that several “needlelike” shaped granules of elemental tellurium are accumulated into the cytosol near the intracytoplasmic membrane system. Flash-spectroscopy, oxygen consumption measurements, and difference spectra analysis indicated that membrane vesicles (chromatophores) isolated from tellurite-grown cells are able to catalyze both photosynthetic and respiratory electron transport activities, although they are characterized by a low c-type cytochrome content (mostly soluble cytochrome c 2). This feature is paralleled by a low cytochrome c oxidase activity and with an NADH-dependent respiration which is catalyzed by a pathway leading to a quinol oxidase (Qox) inhibited by high (millimolar) concentrations of cyanide (CN). Conversely, membranes from R. capsulatus B100 cells grown in the absence of tellurite are characterized by a branched respiratory chain in which the cytochrome c oxidase pathway (blocked by CN in the micromolar range) accounts for 35–40% of the total NADH-dependent oxygen consumption, while the remaining activity is catalyzed by the quinol oxidase pathway. These data have been interpreted to show that tellurite resistance of R. capsulatus B100 is characterized by the presence of a modified plasma-membrane-associated electron transport system. Received May 2, 2002; accepted July 26, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Department of Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.  相似文献   

3.
The effects of potassium tellurite on growth and survival of rho+ and rho0 Saccharomyces cerevisiae strains were investigated. Both rho+ and rho0 strains grew on a fermentable carbon source with up to 1.2 mM K2TeO3, while rho+ yeast cells grown on a non-fermentable carbon source were inhibited at tellurite levels as low as 50 μM suggesting that this metalloid specifically inhibited mitochondrial functions. Growth of rho+ yeast cells in the presence of increasing amount of tellurite resulted in dose-dependent blackening of the culture, a phenomenon not observed with rho0 cultures. Transmission electron microscopy of S. cerevisiae rho+ cells grown in the presence of tellurite showed that blackening was likely due to elemental tellurium (Te0) that formed large deposits along the cell wall and small precipitates in both the cytoplasm and mitochondria.  相似文献   

4.
The response to ATP of peritoneal macrophages from wild-type (WT) and P2X7-invalidated (KO) mice was tested. Low concentrations (1–100 μM) of ATP transiently increased the intracellular concentration of calcium ([Ca2+]i) in cells from both mice. The inhibition of the polyphosphoinositide-specific phospholipase C with U73122 inhibited this response especially in WT mice suggesting that the responses coupled to P2Y receptors were potentiated by the expression of P2X7 receptors. One millimolar ATP provoked a sustained increase in the [Ca2+]i only in WT mice. The response to 10 μM ATP was potentiated and prolonged by ivermectin in both mice. One millimolar ATP increased the influx of extracellular calcium, decreased the intracellular concentration of potassium ([K+]i) and stimulated the secretion of interleukin-1β (IL-1β) only in cells from WT mice. Ten micromolar ATP in combination with 3 μM ivermectin reproduced these responses both in WT and KO mice. The secretion of IL-1β was also increased by nigericin in WT mice and the secretory effect of a combination of ivermectin with ATP in KO mice was suppressed in a medium containing a high concentration of potassium. In WT mice, 150 μM BzATP stimulated the uptake of YOPRO-1. Incubation of macrophages from WT and KO mice with 10 μM ATP resulted in a small increase of YOPRO-1 uptake, which was potentiated by addition of 3 μM ivermectin. The uptake of this dye was unaffected by pannexin-1 blockers. In conclusion, prolonged stimulation of P2X4 receptors by a combination of low concentrations of ATP plus ivermectin produced a sustained activation of the non-selective cation channel coupled to this receptor. The ensuing variations of the [K+]i triggered the secretion of IL-1β. Pore formation was also triggered by activation of P2X4 receptors. Higher concentrations of ATP elicited similar responses after binding to P2X7 receptors. The expression of the P2X7 receptors was also coupled to a better response to P2Y receptors.  相似文献   

5.
Induction of high-frequency shoot regeneration using nodal segments containing axillary buds from a 1-yr-old mother plants of Cannabis sativa was achieved on Murashige and Skoog (MS) medium containing 0.05–5.0 μM thidiazuron. The quality and quantity of regenerants were better with thidiazuron (0.5 μM thidiazuron) than with benzyladenine or kinetin. Adding 7.0 μM of gibberellic acid into a medium containing 0.5 μM thidiazuron slightly increased shoot growth. Elongated shoots when transferred to half-strength MS medium supplemented with 500 mg l−1 activated charcoal and 2.5 μM indole-3-butyric acid resulted in 95% rooting. The rooted plants were successfully acclimatized in soil. Following acclimatization, growth performance of 4-mo-old in vitro propagated plants was compared with ex vitro vegetatively grown plants of the same age. The photosynthesis and transpiration characteristics were studied under different light levels (0, 500, 1,000, 1,500, or 2,000 μmol m−2 s−1). An increase in photosynthesis was observed with increase in the light intensity up to 1,500 μmol m−2 s−1 and then decreased subsequently at higher light levels in both types of plants. However, the increase was more pronounced at lower light intensities below 500 μmol m−2 s−1. Stomatal conductance and transpiration increased with light intensity up to highest level (2000 μmol m−2 s−1) tested. Intercellular CO2 concentration (C i) and the ratio of intercellular CO2 concentration to ambient CO2 (C i/C a) decreased with the increase in light intensity in both in vitro as well as ex vitro raised plants. The results show that in vitro propagated and hardened plants were functionally comparable to ex vitro plants of same age in terms of gas and water vapor exchange characteristics, within the limits of this study.  相似文献   

6.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

7.
Articaine is widely used as a local anesthetic (LA) in dentistry, but little is known regarding its blocking actions on Na+ channels. We therefore examined the state-dependent block of articaine first in rat skeletal muscle rNav1.4 Na+ channels expressed in Hek293t cells. Articaine exhibited a weak block of resting rNav1.4 Na+ channels at −140 mV with a 50% inhibitory concentration (IC50) of 378 ± 26 μM (n = 5). The affinity was higher for inactivated Na+ channels measured at −70 mV with an IC50 value of 40.6 ± 2.7 μM (n = 5). The open-channel block by articaine was measured using inactivation-deficient rNav1.4 Na+ channels with an IC50 value of 15.8 ± 1.5 μM (n = 5). Receptor mapping demonstrated that articaine interacted strongly with a D4S6 phenylalanine residue, which is known to form a part of the LA receptor. Thus the block of rNav1.4 Na+ channels by articaine is via the conserved LA receptor in a highly state-dependent manner, with a ranking order of open (23.9×) > inactivated (9.3×) > resting (1×) state. Finally, the open-channel block by articaine was likewise measured in inactivation-deficient hNav1.7 and rNav1.8 Na+ channels, with IC50 values of 8.8 ± 0.1 and 22.0 ± 0.5 μM, respectively (n = 5), indicating that the high-affinity open-channel block by articaine is indeed preserved in neuronal Na+ channel isoforms.  相似文献   

8.
This work examines the effects of potassium tellurite (K2TeO3) on the cell viability of the facultative phototroph Rhodobacter capsulatus. There was a growth mode-dependent response in which cultures anaerobically grown in the light tolerate the presence of up to 250 to 300 μg of tellurite (TeO32−) per ml, while dark-grown aerobic cells were inhibited at tellurite levels as low as 2 μg/ml. The tellurite sensitivity of aerobic cultures was evident only for growth on minimal salt medium, whereas it was not seen during growth on complex medium. Notably, through the use of flow cytometry, we show that the cell membrane integrity was strongly affected by tellurite during the early growth phase (≤50% viable cells); however, at the end of the growth period and in parallel with massive tellurite intracellular accumulation as elemental Te0 crystallites, recovery of cytoplasmic membrane integrity was apparent (≥90% viable cells), which was supported by the development of a significant membrane potential (Δψ = 120 mV). These data are taken as evidence that in anaerobic aquatic habitats, the facultative phototroph R. capsulatus might act as a natural scavenger of the highly soluble and toxic oxyanion tellurite.  相似文献   

9.
Nannochloropsis sp. was grown to the exponential phase and transferred to the high CO2 (2,800 μl l−1) and irradiance (100 μmol photons m−2 s−1) condition with different levels of nitrate and phosphate for 72 h, then the photosynthetic activity and inorganic carbon acquisition of the alga were measured. The apparent photosynthetic efficiency (α) of Nannochloropsis sp. decreased with increasing NO3 concentration from 150 to 3,000 μM, and the high nitrate-grown cells showed the lowest levels of light-saturated photosynthetic rate (P m), while the low nitrate-grown cells showed the highest levels of dark respiration rate (R d). The maximal light-saturated photosynthetic rate and the minimal dark respiration rate were seen under the middle nitrate condition. When the nitrate concentration ranged from 150 to 3,000 μM, the affinity for inorganic carbons of Nannochloropsis sp. increased sharply with the increasing NO3 concentration to 300 μM and then decreased significantly. The middle phosphate-grown cells exhibited the highest light-saturated photosynthetic rate and apparent photosynthetic efficiency, however, the affinity for inorganic carbons of Nannochloropsis sp. was the maximum under the low phosphate condition. It was shown that the appropriate nitrogen and phosphorus levels were of vital importance to the photosynthesis of cells.  相似文献   

10.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

11.
The soluble tellurium oxyanion, tellurite, is toxic for most organisms. At least in part, tellurite toxicity involves the generation of oxygen-reactive species which induce an oxidative stress status that damages different macromolecules with DNA, lipids and proteins as oxidation targets. The objective of this work was to determine the effects of tellurite exposure upon the Escherichia coli pyruvate dehydrogenase (PDH) complex. The complex displays two distinct enzymatic activities: pyruvate dehydrogenase that oxidatively decarboxylates pyruvate to acetylCoA and tellurite reductase, which reduces tellurite (Te4+) to elemental tellurium (Teo). PDH complex components (AceE, AceF and Lpd) become oxidized upon tellurite exposure as a consequence of increased carbonyl group formation. When the individual enzymatic activities from each component were analyzed, AceE and Lpd did not show significant changes after tellurite treatment. AceF activity (dihydrolipoil acetyltransferase) decreased ~30% when cells were exposed to the toxicant. Finally, pyruvate dehydrogenase activity decreased >80%, while no evident changes were observed in complex′s tellurite reductase activity.  相似文献   

12.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

13.
This paper reports on the optimum concentrations of naphthalene acetic acid (NAA) and 6-benzyladenine (BA) to stimulate callus growth and NAA; kinetin and silver nitrate (AgNO3) for callus redifferentiation in Dianthus caryophyllus L. Meristems were excised and placed in MS medium with 30 g l−1 sucrose and 9.0 μM 2,4-d. Callus clusters were transferred to MS medium containing NAA (0, 1.7, 3.3, and 5.0 μM) and BA (0, 1.7, 3.3, and 5.0 μM) for proliferation and to MS medium with 30 g l−1 sucrose, 2.5 g l−1 phytagel, kinetin (0, 33, and 66 μM); NAA (0, 7.95, and 15.9 μM) and AgNO3 (0, 23.54 and 47.08 μM) for shoot and root induction. Treatments were applied according to a Box–Behnken design. After callus growth and redifferentiation, plants were incubated in the greenhouse at 18 ± 2°C for 4 wk and at 20–26°C for 4 wk. Finally, plants were changed to near-commercial greenhouse conditions with different day (30–35°C) and night (16–24°C) temperatures. Results showed better callus growth at higher NAA concentrations. A maximum callus weight was found with 5.0 μM NAA but without BA. A maximum of 78% calluses with shoots was obtained with 15.9 μM NAA, 47.08 μM AgNO3, and 0.74 μM kinetin and 58% with roots with 15.7 μM NAA and 47.08 μM AgNO3, but without kinetin. The shoots obtained showed little hyperhydricity. Vigorous plants were obtained after gradual acclimatization with an 80% survival rate under nursery conditions.  相似文献   

14.
Icilin is recognized as a chemical agonist of nociceptors and can activate TRPM8 channels. However, whether this agent has any effects on immune cells remains unknown. In this study, the effects of icilin on ion currents were investigated in RAW 264.7 murine macrophage-like cells. Icilin (1–100 μM) increased the amplitude of nonselective (NS) cation current (I NS) in a concentration-dependent manner with an EC50 value of 8.6 μM. LaCl3 (100 μM) or capsazepine (30 μM) reversed icilin-induced I NS; however, neither apamin (200 nM) nor iberiotoxin (200 nM) had any effects on it. In cell-attached configuration, when the electrode was filled with icilin (30 μM), a unique population of NS cation channels were activated with single-channel conductance of 158 pS. With the use of a long-lasting ramp pulse protocol, increasing icilin concentration produced a left shift in the activation curve of NS channels, with no change in the slope factor of the curve. The probability of channel opening enhanced by icilin was increased by either elevated extracellular Ca2+ or application of ionomycin (10 μM), while it was reduced by BAPTA-AM (10 μM). Icilin-stimulated activity is associated with an increase in mean open time and a reduction in mean closed time. Under current-clamp conditions, icilin caused membrane depolarization. Therefore, icilin interacts with the TRPM8-like channel to increase I NS and depolarizes the membrane in these cells.  相似文献   

15.
16.
Cyclanilide is a plant growth regulator that is registered for use in cotton at different stages of growth, to either suppress vegetative growth (in combination with mepiquat chloride) or accelerate senescence (enhance defoliation and boll opening, used in combination with ethephon). This research was conducted to study the mechanism of action of cyclanilide: its potential interaction with auxin (IAA) transport and signaling in plants. The activity of cyclanilide was compared with the activity of the auxin transport inhibitors NPA and TIBA. Movement of [3H]IAA was inhibited in etiolated corn coleoptiles by 10 μM cyclanilide, NPA, and TIBA, which demonstrated that cyclanilide affected polar auxin transport. Although NPA inhibited [3H]IAA efflux from cells in etiolated zucchini hypocotyls, cyclanilide had no effect. NPA did not inhibit the influx of IAA into cells in etiolated zucchini hypocotyls, whereas cyclanilide inhibited uptake 25 and 31% at 10 and 100 μM, respectively. Also, NPA inhibited the gravitropic response in tomato roots (85% at 1 μM) more than cyclanilide (30% at 1 μM). Although NPA inhibited tomato root growth (30% at 1 μM), cyclanilide stimulated root growth (165% of control at 5 μM). To further characterize cyclanilide action, plasma membrane fractions from etiolated zucchini hypocotyls were obtained and the binding of NPA, IAA, and cyclanilide studied. Cyclanilide inhibited the binding of [3H]NPA and [3H]IAA with an IC50 of 50 μM for both. NPA did not affect the binding of IAA, nor did IAA affect the binding of NPA. Kinetic analysis indicated that cyclanilide is a noncompetitive inhibitor of both NPA and IAA binding, with inhibition constants (K i) of 40 and 2.3 μM, respectively. These data demonstrated that cyclanilide interacts with auxin-regulated processes via a mechanism that is distinct from other auxin transport inhibitors. This research identifies a possible mechanism of action for cyclanilide when used as a plant growth regulator.  相似文献   

17.
In vivo modulation of HMG-CoA reductase (HMGR) activity and its impact on artemisinin biosynthesis as well as accumulation were studied through exogenous supply of labeled HMG-CoA (substrate), labeled MVA (the product), and mevinolin (the competitive inhibitor) using twigs of Artemisia annua L. plants collected at the pre-flowering stage. By increasing the concentration (2–16 μM) of HMG-CoA (3-14C), incorporation of labeled carbon into artemisinin was enhanced from 7.5 to 17.3 nmol (up to 130%). The incorporation of label (14C) into MVA and artemisinin was inhibited up to 87.5 and 82.9%, respectively, in the presence of 200 μM mevinolin in incubation medium containing 12 μM HMG-CoA (3-14C). Interestingly, by increasing the concentration of MVA (2-14C) from 2 to 18 μM, incorporation of label (14C) into artemisinin was enhanced from 10.5 to 35 nmol (up to 233%). When HMG-CoA (3-14C) concentration was increased from 12 to 28 μM in the presence of 150 μM mevinolin, the inhibitions in the incorporation of label (14C) into MVA and artemisinin were, however, reversed and the labels were found to approach their values in twigs fed with 12 μM HMG-CoA (3-14C) without mevinolin. In another experiment, 14.2% inhibition in artemisinin accumulation was observed in twigs in the presence of 175 μM fosmidomycin, the competitive inhibitor of 1-deoxy-d-xylulose 5-phosphate reductase (DXR). HMG-CoA reductase activity and artemisinin accumulation were also increased by 18.6 to 24.5% and 30.7 to 38.4%, respectively, after 12 h of treatment, when growth hormones IAA (100 ppm), GA3 (100 ppm) and IAA + GA3 (50 + 50 ppm) were sprayed on A. annua plants at the pre-flowering stage. The results obtained in this study, hence, demonstrate that the mevalonate pathway is the major contributor of carbon supply to artemisinin biosynthesis and HMGR limits artemisinin synthesis and its accumulation in A. annua plants.  相似文献   

18.
19.
The highly toxic oxyanion tellurite has to enter the cytoplasm of microbial cells in order to fully express its toxicity. Here we show that in the phototroph Rhodobacter capsulatus, tellurite exploits acetate permease (ActP) to get into the cytoplasm and that the levels of resistance and uptake are linked.Tellurite exerts its toxic action in the cytoplasmic compartment mostly by triggering an increase in the generation of reactive oxygen species (ROS) (4, 5, 10). This implies that the acquisition of the oxyanion by the cell is a prerequisite for the full development of its toxicity and suggests, as a consequence, that diminished uptake would result in increased resistance.The link between tellurite uptake and toxicity in bacterial cells has been previously discussed in a limited number of reports (2, 3, 7). In Escherichia coli, it was shown that mutations in a phosphate transport system confer a high level of resistance to tellurite and that the oxyanion competes very efficiently for 32Pi transport (7). In the Gram-positive bacterium Lactococcus lactis, mutations associated with proteins PstA and PstD (phosphate transport), but also those associated with protein ChoQ (proline/glycine-betaine/carnitine/choline transport), were shown to confer a higher level of resistance relative to the wild type (8). Finally, in the phototrophic species Rhodobacter capsulatus it was suggested that a phosphate transporter might also be responsible for tellurite uptake (3). This hypothesis has recently been questioned because of the extremely high concentration of Pi needed to significantly inhibit tellurite uptake (2). Conversely, acetate was found to decrease the uptake of tellurite, when present at concentrations as low as 1 μM (2). This finding, along with the fact that lactate and pyruvate, but not malate and succinate, act similarly as competitors of tellurite uptake, led to the proposal that, in R. capsulatus, the oxyanion enters the cell via a monocarboxylate transport system (2).In this work, we show that an acetate transport system is utilized by tellurite to enter R. capsulatus cells and that limitation of this uptake drastically increases the resistance to the oxyanion.  相似文献   

20.
Thirty single-spore isolates of a toxigenic fungus, Fusarium oxysporum, were isolated from asparagus spears and identified by species-specific polymerase chain reaction (PCR) and translation elongation factor 1-α (TEF) sequence analysis. In the examined sets of F. oxysporum isolates, the DNA sequences of mating type genes (MAT) were identified. The distribution of MAT idiomorph may suggest that MAT1-2 is a predominant mating type in the F. oxysporum population. F. oxysporum is mainly recognised as a producer of moniliformin—the highly toxic secondary metabolite. Moniliformin content was determined by high-performance liquid chromatography (HPLC) analysis in the range 0.05–1,007.47 μg g−1 (mean 115.93 μg g−1) but, also, fumonisin B1 was detected, in the concentration range 0.01–0.91 μg g−1 (mean 0.19 μg g−1). There was no association between mating types and the mycotoxins biosynthesis level. Additionally, a significant intra-species genetic diversity was revealed and molecular markers associated with toxins biosynthesis were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号