首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amounts of DNA and RNA was increased (from 20 to 50%) in the presence of salicylic acid in cells of Polyscias filicifolia tissue culture grown in Murachige-Skoog modified medium. Treatment of the tissue culture with salicylic acid resulted in a significant increase of intracellular protein and decrease of proteolytic activity. In cells treated with salicylic acid, the amounts of DNA and RNA was higher in conditions of heat (3 h, 45 degrees C) and cold (24 h, 7 degrees C) stress in comparison with cells exposed to unfavorable temperatures without the initial treatment with salicylic acid.  相似文献   

2.
The content of nucleic acids in the cell culture of fern-leaf aralia Polyscias filicifolia (Moore ex Fournter) Bailey (Araliaceae) exposed to heat shock (3 h at 45°C) decreased significantly (by 20–30%). The decrease in DNA and RNA contents was even larger (30–40%) after longer heat shock (24 h). Cold (24 h at 7°C) caused an even more dramatic decrease in DNA (by 34.2%) and total RNA (by 48%) contents. To judge from the DNA production rate, the presence of hydrogen peroxide and phenazine methosulfate in the culture exerted a dose-dependent and differently directed action on cell proliferation.  相似文献   

3.
Southeastern Australian waters are warming at nearly four times the global average rate (~0.7°C · century?1) driven by strengthening incursions of the warm oligotrophic East Australian Current. The growth rate hypothesis (GRH) predicts that nutrient depletion will impact more severely on seaweeds at high latitudes with compressed growth seasons. This study investigates the effects of temperature and nutrients on the ecophysiology of the habitat‐forming seaweed Phyllospora comosa in a laboratory experiment using temperature (12°C, 17°C, 22°C) and nutrient (0.5, 1.0, 3.0 μM NO3?) scenarios representative of observed variation among geographic regions. Changes in growth, photosynthetic characteristics (via chlorophyll fluorescence), pigment content, tissue chemistry (δ13C, % C, % N, C:N) and nucleic acid characteristics (absolute RNA and DNA, RNA:DNA ratios) were determined in seaweeds derived from cool, high‐latitude and warm, low‐latitude portions of the species’ range. Performance of P. comosa was unaffected by nitrate availability but was strongly temperature‐dependent, with photosynthetic efficiency, growth, and survival significantly impaired at 22°C. While some physiological processes (photosynthesis, nucleic acid, and accessory pigment synthesis) responded rapidly to temperature, others (C/N dynamics, carbon concentrating processes) were largely invariant and biogeographic variation in these characteristics may only occur through genetic adaptation. No link was detected between nutrient availability, RNA synthesis and growth, and the GRH was not supported in this species. While P. comosa at high latitudes may be less susceptible to oligotrophy than predicted by the GRH, warming water temperatures will have deleterious effects on this species across its range unless rapid adaptation is possible.  相似文献   

4.
Cassava mosaic disease is caused by cassava mosaic begomoviruses (CMBs) and can result in crop losses up to 100% in cassava (Manihot esculenta) in Tanzania. We investigated the efficacy of chemotherapy and thermotherapy for elimination of East African cassava mosaic virus (EACMV) of Tanzanian cassava. In vitro plantlets from EACMV‐infected plants obtained from coastal Tanzania were established in the greenhouse. Leaves were sampled from the plants and tested to confirm the presence of EACMV. Plantlets of plants positive for EACMV were initiated in Murashige and Skoog (MS) medium. On the second subculture, they were subjected into chemical treatment in the medium containing salicylic acid (0, 10, 20, 30 and 40 mg/L) and ribavirin (0, 5, 10, 15 and 20 mg/L). In the second experiment, EACMV‐infected plantlets were subjected to temperatures between 35 and 40°C with 28°C as the control. After 42 days of growth, DNA was extracted from plant leaves and PCR amplification was performed using EACMV specific primers. It was found that plant survival decreased with increasing levels of both salicylic acid and ribavirin concentrations. In general, plants treated with salicylic acid exhibited a lower plant survival % than those treated with ribavirin. However, the percentage of virus‐free plants increased with an increase in the concentration of both ribavirin and salicylic acid. The most effective concentrations were 20 mg/L of ribavirin and 30 mg/L of salicylic acid; these resulted in 85.0% and 88.9% virus‐free plantlets, respectively. With regard to thermotherapy, 35°C resulted in 79.5% virus‐free plantlets compared to 69.5% at 40°C. Based on virus elimination, ribavirin at 20 mg/L, salicylic acid 30 mg/L and thermotherapy at 35°C are recommended for production of EACMV free cassava plantlets from infected cassava landraces.  相似文献   

5.
Bacillus subtilis growing at 37° C synthesizes, almost exclusively, saturated fatty acids. However, when a culture growing at 37°C is transferred to 20°C, the synthesis of unsaturated fatty acids is induced. The addition of the DNA gyrase inhibitor novobiocin specifically prevented the induction of unsaturated fatty acid synthesis at 20° C. Furthermore, it was determined that plasmid DNA isolated from cells growing at 20°C was significantly more negatively supercoiled than the equivalent DNA isolated from cells growing at 37°C. The overall results agree with the hypothesis that an increase in DNA supercoiling associated with a temperature downshift could regulate the unsaturated fatty acids synthesis in B. subtilis.  相似文献   

6.
The autolysis of yeast cells has practical implications in the production of fermented foods and beverages and flavourants for food processing. Protein and RNA degradation during yeast autolysis are well described but the fate of DNA is unclear. Yeast cells (Saccharomyces cerevisiae) were autolysed by incubating suspensions at 30–60°C (pH 7.0), and at pH 4.0–7.0 (40°C) for 10–14 days. Up to 55% of total DNA was degraded, with consequent leakage into the extracellular environment of mainly 3′- and 5′-deoxyribonucleotides, and lesser amounts of polynucleotides. The rate and extent of DNA degradation, composition of the DNA degradation products and DNase activity were affected by temperature and pH. The highest amount of DNA degradation occurred at 40°C and pH 7.0, where the highest DNase activity was recorded. DNase activity was lowest at 60°C and pH 4.0, where the proportion of polynucleotides in the degradation products was higher. Electronic Publication  相似文献   

7.
The inhibitory effects of substituted nitro- and sulphobenzofurazans on DNA, RNA and protein synthesis were compared in a new malignant fibrosarcoma cell line at 37°C and 41°C. The effects of these drugs with and without mild hyperthermia were evaluated by determining the % inhibition of incorporation of 3H-precursors into DNA, RNA and protein. None of the sulphobenzofurazan derivatives (Sbf) were effective inhibitors of nucleic acid and protein synthesis at 37°C nor did they enhance the inhibitory effect of hyperthermia alone. The nitrobenzofurazan derivatives (Nbf) at concentrations 10% that used for the Sbf derivatives strongly inhibited biopolymer synthesis in a dose related manner; 4-chloro-7-nitrobenzofurazan (Nbf-Cl) being the most potent inhibitor. Hyperthermia amplified the effect of all the Nbf compounds tested on RNA and protein synthesis but did not further affect DNA synthesis. This selective synergistic effect was most pronounced when the lowest concentrations of Nbf compounds were studied. The synergism however, did not follow a uniform pattern. 6-Mercaptopurine and 6-(1-methyl-4-nitro-5-imidazoyl)thiopurine (Azathioprine) (100 μM) had marginal effects on nucleic acid and protein synthesis when the cells were exposed to these two thiopurines for 1 h at both 37°C and 41°C and they had only a moderate inhibitory effect after exposure for 15 h.  相似文献   

8.
We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short‐term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30–37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30‐min preincubation of isolated mitochondria at 25–40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short‐term high temperature events associated with global warming.  相似文献   

9.
Soybean (Glycine max (L.) Merr.) salicylic acid methyl transferase (GmSAMT1) catalyses the conversion of salicylic acid to methyl salicylate. Prior results showed that when GmSAMT1 was overexpressed in transgenic soybean hairy roots, resistance is conferred against soybean cyst nematode (SCN), Heterodera glycines Ichinohe. In this study, we produced transgenic soybean overexpressing GmSAMT1 and characterized their response to various SCN races. Transgenic plants conferred a significant reduction in the development of SCN HG type 1.2.5.7 (race 2), HG type 0 (race 3) and HG type 2.5.7 (race 5). Among transgenic lines, GmSAMT1 expression in roots was positively associated with SCN resistance. In some transgenic lines, there was a significant decrease in salicylic acid titer relative to control plants. No significant seed yield differences were observed between transgenics and control soybean plants grown in one greenhouse with 22 °C day/night temperature, whereas transgenic soybean had higher yield than controls grown a warmer greenhouse (27 °C day/23 °C night) temperature. In a 1‐year field experiment in Knoxville, TN, there was no significant difference in seed yield between the transgenic and nontransgenic soybean under conditions with negligible SCN infection. We hypothesize that GmSAMT1 expression affects salicylic acid biosynthesis, which, in turn, attenuates SCN development, without negative consequences to soybean yield or other morphological traits. Thus, we conclude that GmSAMT1 overexpression confers broad resistance to multiple SCN races, which would be potentially applicable to commercial production.  相似文献   

10.
Summary A newly established cell line was obtained from the culture of embryonic cells of the potato tuber moth Phthorimaea operculella in low temperature conditions (19° C) using modified Grace’s medium supplemented with 10% fetal bovine serum. The population doubling time was about 80 h when cells were cultivated at 19°C and 38 h at 27° C. The cell line had a relatively homogeneous population consisting of various sized spherical cells. The cells were cultivated for more than 25 passages. Their polypeptidic profile was different from profiles of other P. operculella cell lines we previously described and from other lepidopteran cells. The new cell line was designated ORS-Pop-95. The complete replication of the potato tuber moth granulosis virus (PTM GV) was obtained in vitro by both viral infection and DNA transfection. PTM GV multiplied at a significant level during several passages of the cell line that was maintained at 19° C. As long as the cells were maintained at 19° C, virus multiplication could also be obtained at the same rate at 27° C. To compare PTM GV multiplied both in vivo and in vitro, we used morphological identification, serological, DNA probe diagnosis and endonuclease digest profile analysis and confirmed the identity of the virus.  相似文献   

11.
Tissue culture for the deep-sea clam Calyptogena soyoae (C. soyoae) has been examined. Mantle tissue was cultured in Dulbecco's modified Eagle medium that was prepared using artificial seawater supplemented with fetal bovine serum (FBS) and the body fluid of C. soyoae. The mantle cells were viable in culture for at least 13 days at 4°C and atmospheric pressure on a polylysine-coated dish, although no cells attached in the body fluid-free culture medium. It was found that mantle cells synthesized DNA and seemed to proliferate under atmospheric conditions. Received: June 1, 2000 / Accepted: October 4, 2000  相似文献   

12.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

13.
A new continuous cell line from ovarian tissue of commercial variety “Kolar Gold” of silkworm, Bombyx mori, was established and designated as DZNU-Bm-12. The tissue was grown in MGM-448 insect cell culture medium supplemented with 10% fetal bovine serum (FBS) and 3% heat-inactivated B. mori hemolymph at 25 ± 1°C. The migration of partially attached small round refractive cells from the fragments of ovarioles began from the beginning of explantation. The cells multiplied partially attached in the primary culture initially, and some of them become freely suspended after 20 passages. The cells were adapted to MGM-448 and TNM-FH media each with 10% FBS and the population doubling time of cell line was about 36 and 24 hr, respectively. The chromosome number was near diploid at initial passages and slightly increased at 176th passage, but a few tetraploids and hexaploids were also observed. DNA profiles using simple sequence repeat loci established the differences between DZNU-Bm-12 and DZNU-Bm-1 and most widely used Bm-5 and BmN cell lines. The cell line was found susceptible to B. mori nucleopolyhedrovirus (BmNPV) with 85–90% of the cells harboring BmNPV and having an average of 3–17 OBs/infected cell. We suggest the usefulness of this cell line in BmNPV-based baculoviral expression system and also for studying in vitro virus replication.  相似文献   

14.
Three aerobic bacterial consortia GY2, GS3 and GM2 were enriched from polycyclic aromatic hydrocarbon-contaminated soils with water-silicone oil biphasic systems. An aerobic bacterial strain utilizing phenanthrene as the sole carbon and energy source was isolated from bacterial consortium GY2 and identified as Sphingomonas sp. strain GY2B. Within 48 h and at 30°C the strain metabolized 99.1% of phenanthrene (100 mg/l) added to batch culture in mineral salts medium and the cell number increased by about 40-fold. Three metabolites 1-hydroxy-2-naphthoic acid, 1-naphthol and salicylic acid, were identified by gas chromatographic mass spectrometry and UV–visible spectroscopy analysis. A degradation pathway was proposed based on the identified metabolites. In addition to phenanthrene, strain GY2B could use other aromatic compounds such as naphthalene, 2-naphthol, salicylic acid, catechol, phenol, benzene and toluene as a sole source of carbon and energy.  相似文献   

15.
Overexpression of bcl‐xL in recombinant Chinese hamster ovary (rCHO) cells has been known to suppress apoptotic cell death and thereby extend culture longevity during batch culture. However, its effect on specific productivity (q) of rCHO cells is controversial. This study attempts to investigate the effect of bcl‐xL overexpression on q of rCHO cells producing erythropoietin (EPO). To regulate the bcl‐xL expression level, the Tet‐off system was introduced in rCHO cells producing EPO (EPO‐off‐bcl‐xL). The bcl‐xL expression level was tightly controlled by doxycycline concentration. To evaluate the effect of bcl‐xL overexpression on specific EPO productivity (qEPO) at different levels, EPO‐off‐bcl‐xL cells were cultivated at the two different culture temperatures, 33°C and 37°C. The qEPO at 33°C and 37°C in the presence of 100 ng/mL doxycycline (without bcl‐xL overexpression) were 4.89 ± 0.21 and 3.18 ± 0.06 μg/106cells/day, respectively. In the absence of doxycycline, bcl‐xL overexpression did not affect qEPO significantly, regardless of the culture temperature, though it extended the culture longevity. Taken together, bcl‐xL overexpression showed no significant effect on the qEPO of rCHO cells grown at 33°C and 37°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
The isolation of a temperature sensitive cell line from the Chinese hamster line CCL39 of the American Type Culture Collection is described. At the nonpermissive temperature (39°C) the cells become attached to the surface of tissue culture dishes, but no microscopically observable colonies are formed upon prolonged incubation. Exposure to the high temperature for more than 24 hours leads to an almost complete loss in viability. A karyotypic analysis showed that this new line has lost one of the medium-sized metacentric chromosomes, although no proof is available so far to show that this loss is not simply coincidental. In nonsynchronized cultures transferred to 39°C DNA synthesis stops first, RNA synthesis shortly thereafter, while protein synthesis (turnover) continues for a longer time. After such a shift the cell number increases by less than 15% as measured with the Coulter counter. Studies with synchronized cultures give the following results: (1) one round of DNA synthesis can occur at 39°C when the cells are released from serum starvation or a hydroxyurea block, or when mitotic cells are placed at 39°C; (2) the entry of cells into metaphase of mitosis at 39°C is almost normal when the preceding time interval at 39°C is only eight hours (release of cells from G1/S boundary), but considerably reduced when the cells spend an additional 12 to 15 hours at 39°C in G1 (release from serum starvation). Infection by SV40 virus temporarily induces DNA synthesis after it has come to a stop at the nonpermissive temperature, but cells permanently transformed by SV40 still exhibit the temperature-sensitive phenotype.  相似文献   

17.
The objective of this study was to analyze the mechanism of some physiological processes accompanying acquisition of sunflower (Helianthus annuus L.) chilling resistance due to seeds hydropriming in the presence of salicylic acid, jasmonic acid, 24-epibrassinolide followed exposition of seeds to short-term heat shock treatment. The seeds were hydroprimed at 25 °C in limited amounts of water or solution of salicylic or jasmonic acid at 10?2, 10?3 and 10?4 M concentration, 24-epibrassinolide at 10?6, 10?8 and 10?10 M concentration. The seeds were incubated for 2 days, subjected to short-term heat shock (45 °C, 2 h) and chilled for 21 days at 0 °C. Sunflower chilling susceptibility and physiological responses were evaluated according to the inhibition of radicle growth, the inhibition of the number of lateral roots formation, the activity of catalase and changes in soluble carbohydrates in seedlings developing for 72 h at 25 °C. Hydropriming and short-term heat shock application explicitly reduced inhibition of roots as well as lateral roots development by allowing the germinating seeds to recover from the growth-inhibiting effects of chilling. Seeds hydropriming in solutions containing salicylic acid, jasmonic acid and 24-epibrassinolide followed heat shock treatment additionally promoted the activity of catalase and sugars metabolism, which stimulated seedlings development and alleviated the decrease of F v/F m caused by chilling conditions. These beneficial effects contributed to increased resistance of sunflower seedlings to chilling stress. The present study demonstrated that the most profitable effect on reducing negative effect of chilling may be achieved by short-term heat shock applied during hydropriming in water supplemented with 24-epiBL (10?8 and 10?10 M) or salicylic acid (10?3 and 10?4 M).  相似文献   

18.
The production of β-glucuronidase (GUS) driven by the Arabidopsis small heat shock protein 18.2 promoter in liquid cultures of transgenic tobacco (Nicotiana tabacum) hairy roots is reported. Clone GD-3, showing high GUS heat induction and a moderate growth rate, was selected from 436 clones for study. Treatment of GD-3 with heat shock at 36–42°C for 2 h then recovery at 27°C resulted in an increase in GUS specific activity, while higher heat-shock temperatures led to a decline. These results were in accordance with the change in esterase activity, a measure of tissue viability. Using 2 h of 42°C heat shock and a recovery phase at 27°C, GUS specific activity increased rapidly and reached a maximum of 267.6 nmol 4-methylumbelliferyl β-D-glucuronic acid (MU) min−1 mg−1 protein at 24 h of recovery. When tissues were continuously heated at 42°C and tested without a recovery period, GUS mRNA was detectable at 2 h and peaked at 5 h, but GUS activity was not seen until 10 h and did not peak until 28 h; in addition, the maximum activity was lower than that seen after heat shock for only 30 min or 2 h, followed by recovery. This shows that recovery at normal temperature is crucial for the heat-inducible heterogeneous expression system of transgenic hairy roots. Multiple heat-shock treatments showed that this system was heat reinducible, although a gradual decline in GUS specific activity was seen in the second and third cycles.  相似文献   

19.
The polymerase chain reaction (PCR) based detection of blackleg and soft rot erwiniae involves pre‐PCR processing steps which may compromise the sensitivity of detection. The aim of this study was to standardize these various steps to develop reproducible diagnostic PCR protocol for the detection of the three known soft rot erwiniae as they occur in the tuber, singly or in combination. Comparison of tuber peel and stolon end tissue as a starting material for enrichment of the bacteria indicated that tuber peel samples resulted in more representative and sensitive detection of the strains than extract from stolon end tissues. Substances of potato origin in the peel extract were found to be highly inhibitory to the PCR. Addition of the antioxidant Dethiotreitol to the samples before enrichment did not have any significant effect on detection during the 24 h period incubation of the peel extract at room temperature. Bulk washing of tubers with one rotten tuber included with the working sample caused surface contamination on 67–91% of the healthy tubers. Washing tubers individually circumvents the problem. The optimum temperature for enrichment of all the three strains was 27°C. At 37°C, Pectobacterium carotovorum failed to be detected while PCR on Pectobacterium atrosepticum and isolates of Dickeya spp. always produced amplification of the specific DNA fragments. Viability test on Nutrient Agar showed that only Dickeya isolates were viable after 48 h of incubation at 37°C suggesting that the detection of P. atrosepticum at 37°C was from dead or non‐viable cells. Post cell death detection experiment further confirmed that DNA was amplified from dead cells of all the strains at 27°C and 33°C whereas at 37°C, only DNA from dead cells of isolates of Dickeya and P. atrosepticum were amplified. There was no amplification from the dead cells of all isolates of P. carotovorum following the 48 h post death incubation at 37°C. The reason for this difference in post death longevity is not clear at this stage.  相似文献   

20.
Cold-induced depolymerization of cortical microtubules were examined in suspension culture cells of corn (Zea mays L. cv Black Mexican Sweet) at various stages of chilling. In an attempt to determine whether microtubule depolymerization contributes to chilling injury, experiments were carried out with and without abscisic acid (ABA) pretreatment, since ABA reduces the severity of chilling injury in these cells. Microtubule depolymerization was detectable after 1 h at 4°C and became more extensive as the chilling was prolonged. There was little chilling injury after 1 d at 4°C in either ABA-treated or non-ABA-treated cells. After 3 d at 4°C, there was about 26% injury for ABA-treated and 40% injury for non-ABA-treated cells, as evaluated by 2,3,5-triphenyl-tetrazolium chloride reduction and by regrowth. After 1d at 4°C, less than 10% of cells retained full arrays of microtubules in both ABA-treated and non-ABA-treated cells, the remainder having either partial arrays or no microtubules. After 3d at 4°C, about 90% of cells showed complete or almost complete depolymerization of microtubules in both ABA-treated and non-ABA-treated cells. ABA did not stabilize the cortical microtubules against cold-induced depolymerization. In about 66% of ABA-treated cells and 57% of non-ABA-treated cells that had been held at 4°C for 3d, repolymerization of cortical microtubules occurred after 3h at 28°C. These results argue against the hypothesis that depolymerization of cortical microtubules is a primary cause of chilling injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号