首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human eyes provide a natural window for noninvasive measurement of the pulse wave velocity (PWV) of small arteries. By measuring the retinal PWV, the stiffness of small arteries can be assessed, which may better detect early vascular diseases. Therefore, retinal PWV measurement has attracted increasing attention. In this study, a jump‐scanning method was proposed for noninvasive measurement of retinal PWV using spectral‐domain optical coherence tomography (SD‐OCT). The jump‐scanning method uses the phase‐resolved Doppler OCT to obtain the pulse shapes. To realize PWV measurement, the jump‐scanning method extracts the transit time of the pulse wave from an original OCT scanning site to another through a transient jump. The measured retinal arterial PWV of a young human subject with normal blood pressure was in the order of 20 to 30 mm/s, which was consistent with previous studies. As a comparison, PWV of 50 mm/s was measured for a young human subject with prehypertension, which was in accordance with the finding of strong association between retinal PWV and blood pressure. In summary, it is believed the proposed jump‐scanning method could benefit the research and diagnosis of vascular diseases through the window of human eyes.   相似文献   

2.
3.

Background

The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery.

Methods

An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube.

Results

For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is analyzed and shown to yield predictions that do not appear to be correct.

Conclusion

Contrary to the theory used for more than fifty years to predict the PWV, it speeds up as arteries become smaller and smaller. Furthermore, an increase in the PWV in some cases may be due to decreasing force of myocardial contraction rather than arterial stiffness.  相似文献   

4.
The use of biomechanical methods to quantify functional/physiological parameters in malnourished humans can provide new insights into the understanding of effects of malnutrition on human muscles. Therefore, a transportable ankle ergometer device was developed, which allows the quantification of mechanical properties of the human plantarflexor muscles in field experiments. More precisely, the ergometer quantifies isometric force in static conditions and musculotendinous stiffness in dynamic conditions. This latter parameter is obtained by the quick-release technique. The aim of the study was first to conduct a reproducibility study on musculotendinous stiffness. Seven healthy subjects were tested three times in alternate days. The results showed the well-known linear relationship between musculotendinous stiffness and torque, where the slope was used as a stiffness index (SI(MT)). Individual regression line comparison indicated that SI(MT) values were not significantly different between the three repeated measurements (P>0.05). Mean coefficient of variation was 4.5+/-1.0%. The individual SI(MT) data were within the range of those reported in the literature. The reproducibility study showed that the quantification of musculotendinous stiffness by means of the quick-release technique is a reliable method, using a transportable ankle ergometer device.  相似文献   

5.
A cross-correlation technique is presented to determine the average time lag between simultaneous pulse wave tracings at two points by considering the similarity of the complete wave series. It is shown that a true average phase velocity can be meaningfully defined for a natural pulse wave by the correlation technique. The cross-correlation technique is also performed on the pulse wave series of a particular frequency component isolated from the original series with a specially designed digital band pass filter. It is shown that well defined dispersion curve of pulse wave velocity can be determined from the filtered cross-correlation technique. The conventional method to determine pulse wave velocity from a single characteristic point is discussed in the light of the findings of the present study.  相似文献   

6.
This investigation was designed to test the validity and reliability of a new measure of inversion/eversion ankle stiffness on a unique medial/lateral swaying cradle device utilizing a test/retest with comparison to a known standard. Ankle stiffness is essential to maintaining joint stability. Most ankle injuries occur via an inversion mechanism. To date, very little information is available regarding stiffness of the evertor muscles in the prevention of excessive inversion joint rotation. Transient oscillation data representing inversion/eversion stiffness was obtained in a bipedal weight-bearing stance with an upright posture. Using commercially available springs with stiffness of 4.80N/cm the measured value recorded by the cradle was 4.87N/cm. Mean active stiffness values of the ankle were 35.70Nm/cm (SD 9.45). The trial-to-trial reliability ICC (2,1) coefficient was 0.96 with an SEM of 2.05Nm/rad, and the day-to-day reliability ICC (2,k) coefficient was 0.93 and an SEM of 3.00Nm/rad. The results demonstrate that inversion/eversion ankle stiffness measures on this device are a valid, repeatable and consistent measure. This is relevant because the ability to accurately quantify inversion/eversion ankle stiffness will improve our understanding of biomechanical stability and factors that influence it. It will also enable identification of ankle injury risk factors that will lead to more efficient rehabilitation programs and injury prevention strategies.  相似文献   

7.

Background

Arterial diameters enlarge in response to wall thickening, plaques, and many atherosclerotic risk factors. We hypothesized that right common carotid artery (RCCA) diameter would be independently associated with cardiac disease and improve risk discrimination.

Methods

In a middle-aged, biracial population (baseline n = 11225), we examined associations between 1 standard deviation increments of baseline RCCA diameter with prevalent myocardial infarction (MI) and incident cardiac events (MI or cardiac death) using logistic regression and Cox proportional hazards models, respectively. Areas under the receiver operator characteristic curve (AUC) were used to estimate model discrimination.

Results

MI was present in 451 (4%) participants at baseline (1987–89), and incident cardiac events occurred among 646 (6%) others through 1999. Adjusting for IMT, RCCA diameter was associated with prevalent MI (female OR = 2.0, 95%CI = 1.61–2.49; male OR = 1.16, 95% CI = 1.04–1.30) and incident cardiac events (female HR = 1.75, 95% CI = 1.51–2.02; male HR = 1.27, 95% CI = 1.15–1.40). Associations were attenuated but persisted after adjustment for risk factors (not including IMT) (prevalent MI: female OR = 1.73, 95% CI = 1.40–2.14; male OR = 1.14, 95% CI = 1.02–1.28, and incident cardiac events: female HR = 1.26, 95% CI = 1.08–1.48; male HR = 1.19, 95% CI = 1.08–1.32). After additional adjustment for IMT, diameter was associated with incident cardiac events in women (HR = 1.18, 95% CI = 1.00–1.40) and men (HR = 1.17, 95% CI = 1.06–1.29), and with prevalent MI only in women (OR = 1.73; 95% CI = 1.37–2.17). In women, when adjustment was limited, diameter models had larger AUC than other models.

Conclusion

RCCA diameter is an important correlate of cardiac events, independent of IMT, but adds little to overall risk discrimination after risk factor adjustment.  相似文献   

8.
This study is concerned with the computation of aortic pulse wave velocity based on simultaneous recordings of the aortic pressure gradient and first-time derivative of aortic pressure. These variables were recorded by means of a double-lumen catheter introduced in the aorta of four anesthetized closed chest dogs, and connected to critically damped manometer systems. Results of aortic pulse wave velocity were then compared: (i) to the true phase velocity obtained from spectra of apparent phase velocity, and (ii) to the pulse wave velocity computed from the time shift between maximum slopes of the pressure wave. From the aortic valves to 37 cm down the aortic trunk, pulse wave velocity increased from 410-460 cm/s to approximately 600-800 cm/s. Based on the wave propagation equation presented of Bramwell and Hill (Bramwell, J.C., and Hill, A. V. 1922. Proc. R. Soc. 93, 298-306), volumetric extensibility coefficients were computed from pulse wave velocity data. Results indicated that, from the aortic valves to 37 cm down to the aorta, the mean volumetric extensibility decreased from 0.43-0.56% deltaV/cm H2O to 0.16-0.25% deltaV/cm H2O (1 cm H2O = 94.1 N/m2).  相似文献   

9.
Biomechanics and Modeling in Mechanobiology - Arterial wall parameters (i.e., radius and viscoelasticity) are prognostic markers for cardiovascular diseases (CVD), but their current monitoring...  相似文献   

10.
11.
The aim of this paper is to prove the possible reproducibility of measurement with a new developed device for artery elasticity monitoring and determining the standard of major pulse wave parameters. As a measurement sensor, a conic probe with thin convex membrane was used. This technique allows setting an arbitrary pressure to a measured surface artery. We measured pulse waves on the radial arteries of 108 individuals. We expected similar features in arterial wall elasticity. We concentrated primarily on the amount of subcutaneous fat. For the measured waves we evaluated five following pulse wave parameters: relative crest time, elasticity index, dicrotic wave attenuation, dicrotic wave time and interwave distance. There were no significant differences in measured pulse wave parameters among the tested groups of subjects.  相似文献   

12.
13.
Oscillometric blood pressures are derived from the amplitude envelope of oscillometric pulses generated in an occlusive cuff during cuff inflation or deflation; one factor which will affect the characteristics of these pulses is the size of the cuff bladder. Because limiting values are stipulated in recommendations and standards for bladder sizes, there is a wide variety of acceptable cuff sizes for any particular application. An experimental and theoretical study was undertaken to show the dependence of oscillometric blood pressures on bladder size. Actual cuff-arm compliance data were obtained from two subjects for two cuffs of different bladder size. Theoretical analysis was then applied to the data to predict the effects of different bladder sizes on the characteristics of the pulses. The results show that cuff-arm compliance and bladder size interact to affect the pulse amplitude and hence oscillometric blood pressure determination. These results suggest that blood pressures obtained using the oscillometric method may vary depending on cuff size, and in particular that replacement cuffs for oscillometric non-invasive blood pressure monitors should be chosen carefully.  相似文献   

14.

Aims

Thoracic aortic aneurysm (TAA) is potentially life-threatening and requires close follow-up to prevent aortic dissection. Aortic stiffness and size are considered to be coupled. Regional aortic stiffness in patients with TAA is unknown. We aimed to evaluate coupling between regional pulse wave velocity (PWV), a marker of vascular stiffness, and aortic diameter in TAA patients.

Methods

In 40 TAA patients (59 ± 13 years, 28 male), regional aortic diameters and regional PWV were assessed by 1.5 T MRI. The incidence of increased diameter and PWV were determined for five aortic segments (S1, ascending aorta; S2, aortic arch; S3, thoracic descending aorta; S4, suprarenal and S5, infrarenal abdominal aorta). In addition, coupling between regional PWV testing and aortic dilatation was evaluated and specificity and sensitivity were assessed.

Results

Aortic diameter was 44 ± 5 mm for the aortic root and 39 ± 5 mm for the ascending aorta. PWV was increased in 36 (19 %) aortic segments. Aortic diameter was increased in 28 (14 %) segments. Specificity of regional PWV testing for the prediction of increased regional diameter was ≥ 84 % in the descending thoracic to abdominal aorta and ≥ 68 % in the ascending aorta and aortic arch.

Conclusion

Normal regional PWV is related to absence of increased diameter, with high specificity in the descending thoracic to abdominal aorta and moderate results in the ascending aorta and aortic arch.  相似文献   

15.
Quantitative measurement of ankle joint stiffness following stroke could prove useful in monitoring the progress of a rehabilitation programme. The objective of this study was to design a manual device for use in the clinical setting. Manual measurement of spastic ankle joint stiffness has historically been conducted using hand-held dynamometers or alternative devices, but some difficulties have been reported in controlling the velocity applied to the ankle during the measurement. In this study, a manually operated device was constructed with a footplate, a torquemeter and a potentiometer. It was mechanically designed to rotate around an approximated axis of the ankle joint and to measure ankle joint angular position and its corresponding resistive torque. Two stroke hemiplegic subjects pariticapted in a pilot study. The results suggested that difficulty in controlling the applied velocity might be complemented by presenting torque data as a function of peak angular velocity in each stretching cycle. Moreover, the results demonstrated that the device could potentially apply a wide range of angular velocities and provide potentially useful clinical information. Quantitative data successfully acquired using this method included the approximate ankle angular position, where the velocity-dependent characteristics of stiffness was notably initiated and its corresponding torque and velocity.  相似文献   

16.
17.
This paper comments on the article “Retinal pulse wave velocity measurement using spectral‐domain optical coherence tomography” by Qian Li et al. The authors propose a method to determine the pulse wave velocity in retinal arteries and veins. This method should enable a noninvasive determination of biomechanical properties of the vessel network, particularly the elasticity of the vessel walls. Although the observations the authors made might seem reasonable at first glance, they are in fact highly surprising and contradictory to theoretical predictions and previously published results.  相似文献   

18.
ObjectivesArterial stiffness, which is caused by aging and other cardiovascular risk factors and primarily affects the aorta, is associated with cardiac and cerebral morbidity and mortality. The objective of our study was to non-invasively estimate local biomechanical and hemodynamic biomarkers related to proximal aortic stiffness, by combining cardiovascular magnetic resonance (CMR) data and numerical simulations.Materials and methodsTo achieve this aim, we used a numerical 1D fluid-structure model to simulate blood flow in the descending aorta, and we combined this model with clinical data (areas and velocities in three levels of the descending aorta, carotid pressures) acquired in two healthy subjects using CMR and applanation tonometry.ResultsFirst, we studied the sensibility of our model on an idealized aorta and showed that our model was able to characterize age-related arterial alterations, when compared to established physiological knowledge. Furthermore, while comparisons of simulations against clinical data revealed low errors (< 20%) in terms of aortic areas and velocities for the two subjects, more important errors were found for pulse pressures (up to 20%). Importantly, errors in terms of velocity and area were lower than their variations occurring with aging.ConclusionsThus, our fast method could enable the non-invasive estimation of aortic functional parameters and a more realistic version of our numerical model could also provide a reliable estimation of central pressure.  相似文献   

19.
The purpose of this study is to introduce a new technique for recording the kinematics of the temporomandibular joint and incisors, using an electromagnetic tracking device and custom dental appliance. Five normal subjects took part in this kinematic study (4 females, 1 male, mean age of 34.8 years). Subjects' mandibular motion during maximal opening tasks were recorded on two different days and linear distance (LD) (i.e., the LD between the start and end position) and curvilinear path (CP) (i.e., the curvilinear distance along the curve between the start and end position) were calculated for the lower incisor landmark and both condyles in the sagittal plane (in mm). In the present study, the range of incisal movements (LD: 34.9 to 54.3 mm, CP: 36.5 to 60.3 mm) and that of condylar movements (LD: 7.5 to 25.3 mm, CP: 10.6 to 27.6 mm) in the sagittal plane during opening are in the normal range compared to the previous literature. The ability of subjects to reproduce the same motion between the two sessions was also calculated. Differences due to trial sessions and different repetitions within a session were negligible, indicating that the method can be used to assess changes between testing conditions in healthy subjects, and patients pre- and post-operatively.  相似文献   

20.
Gerasimov IG  Samokhina EV 《Biofizika》1999,44(6):1119-1120
To describe the dependence of arterial pressure on the speed of spreading of pulse wave, an curvilinear regression equation with two constants was proposed. The causes of the discrepancy in the dependences reported in literature are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号