首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decline of the European hare Lepus europaeus populations has been shown to be correlated with agricultural intensification, which has caused loss of habitat heterogeneity. We aimed to investigate the diurnal spring habitat selection using Jacobs’ second selection index in an intensively cultivated farmland to reveal how the habitat choice by resting hares was affected by changes in the habitat availability. Clearance counts of hares driven out of known areas were made during an 11-year field investigation within two sectors of a private hunting ground located in the Paris basin (France). The loss of habitat heterogeneity included the disappearance of pastures dedicated to a last remaining sheep farm in the area, the removal of non-cropped areas and field boundaries and the increase of mean field size. Breeding stocks of hare declined during the study. Harrowed fields were always avoided. Pastures, alfalfa fields, thickets and fallow land were selected at the start of our study, whereas the remaining part was avoided at the end. The preference for ploughed fields decreased with the growth of vegetation in the winter-wheat fields. To benefit hares, land management should provide year-round vegetative cover and food from non-cropped areas in intensive arable farms.  相似文献   

2.
Snowshoe hares (Lepus americanus) are an ecologically important herbivore because they modify vegetation through browsing and serve as a prey resource for multiple predators. We implemented a multiscale approach to characterize habitat relationships for snowshoe hares across the mixed conifer landscape of the northern Rocky Mountains, USA. Our objectives were to (1) assess the relationship between horizontal cover and snowshoe hares, (2) estimate how forest metrics vary across the gradient of snowshoe hare use and horizontal cover, and (3) model and map snowshoe hare occupancy and intensity of use. Results indicated that both occupancy and intensity of use by snowshoe hares increased with horizontal cover and that the effect became stronger as intensity of use increased. This underscores the importance of dense horizontal cover to achieve high use, and likely density, of snowshoe hares. Forest structure in areas with high snowshoe hare use and horizontal cover was characterized as multistoried with dense canopy cover and medium‐sized trees (e.g., 12.7–24.4 cm). The abundance of lodgepole pine (Pinus contorta) was associated with snowshoe hare use within a mixed conifer context, and the only species to increase in abundance with horizontal cover was Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa). Our landscape‐level modeling produced similar patterns in that we observed a positive effect of lodgepole pine and horizontal cover on both occupancy and use by snowshoe hares, but we also observed a positive yet parabolic effect of snow depth on snowshoe hare occupancy. This work is among the first to characterize the multiscale habitat relationships of snowshoe hares across a mixed conifer landscape as well as to map their occupancy and intensity of use. Moreover, our results provide stand‐ and landscape‐level insights that directly relate to management agencies, which aids in conservation efforts of snowshoe hares and their associated predators.  相似文献   

3.
Habitat quality and quantity are key factors in evaluating the potential for success of a wildlife translocation. However, because of the difficulty or cost of evaluating these factors, habitat assessments may not include valuable information on important habitat attributes including the abundance and distribution of prey, predators, and competitors. Fishers (Pekania pennanti) are one of the most commonly reintroduced carnivores in North America, and they are a species of conservation concern in their western range. We examined the relative importance of landscape features and species interactions in determining habitat use of a reintroduced population of fishers in the southern Cascade Mountains, Washington, USA. We used detections of prey and predators at 134 remote camera stations, remotely sensed forest structure data, and telemetry locations of fishers in a resource selection function to assess the relative importance of prey, predators, and forest structure in fisher habitat selection. Fishers selected habitats based on forest conditions and activity levels of snowshoe hares (Lepus americanus), whereas bobcat (Lynx rufus) and coyote (Canis latrans) activity levels did not directly affect habitat selection. The probability of fisher use increased in older stands, close to recently disturbed stands, and in areas with intermediate levels of hare activity. Bobcat and hare activity levels were positively correlated, and fishers avoided areas with the greatest hare activity, suggesting that fishers may experience a food-safety tradeoff in the study area. Temporal activity patterns in photo detections indicate that fishers may mediate this danger by avoiding bobcats temporally. Our findings suggest that fishers in Washington prefer habitat mosaics of old and recently disturbed stands where they have greater access to resting structures and hares. Management that maintains mosaics of young and old forest across large landscapes is likely to support fisher recovery. Future reintroduction efforts would benefit from an assessment of prey and predator abundance in proposed reintroduction areas before project initiation. © 2019 The Wildlife Society.  相似文献   

4.
The number of European brown hares (Lepus europaeus) has been declining throughout much of Europe since the 1960s. Consequently, many studies have focused on analysing habitat selection of European hares in order to improve the suitability of the habitat for this species. Habitat preferences of European hares are known to be affected by hare density, but most studies have been conducted in agricultural areas where hare densities were medium to high. Finding habitat preferences at high densities is difficult as most available habitats are occupied. In addition, in agricultural areas, field size might influence the hares’ habitat selection because it affects the distribution and availability of certain habitat types. However, most studies relate to areas with large field sizes. In this study, we analysed the habitat preferences of European hares in spring and autumn during the activity period, in the early hours of the night, in an agricultural area with low hare density and small average field size using Chesson’s electivity index. Moreover, we focused on the question whether two different habitat classifications varying in their specificity might cause contradictory results regarding European hares’ habitat preferences. Our results show that in this agricultural area with low hare density, European hares avoided several habitat types which were preferred in other study areas with higher hare densities. Therefore, we assume that hare density has an influence on the species’ habitat selection. In contrast, the small average field size of our study area seemed not to have an effect on hare habitat preference. Furthermore, by pooling habitat types into broader groups, substantial information was lost in some categories. Hence, for some categories, e.g. grassland or agricultural crop land, more detail might be needed than for others, such as urban areas, when analysing hares’ habitat selection. In conclusion, our results imply that studies on habitat preferences have to be conducted in areas with low hare density to be able to gain knowledge on the species’ habitat requirement and hereinafter improve the suitability of the habitat for this species.  相似文献   

5.
In northern Italy, the range of the Eastern cottontail (Sylvilagus floridanus) largely overlaps with that of the native European hare (Lepus europaeus) on the Po Plain. Both species appear to have similar habitat requirements. We studied habitat selection by hares and cottontails during feeding activity from September 2006 to August 2007 in two areas where they occur alone (allopatry) and in one area where they occur together (sympatry). The three areas were basically similar, so that shifts in habitat use observed in sympatry should reflect the response to interspecific competition. Habitat selection was examined at micro- and macro-habitat levels throughout seasons. Habitat breadth of both species followed the change of resource availability through seasons in allopatry as well as in sympatry. No shifts in habitat use were evident at macro-habitat level, even during autumn which was the limiting season. Exploitation of shared habitats by the two species seems to be promoted by differential micro-habitat use within macro-habitat types. Cottontails used woods with dense understory in greater proportion than hares, and their present sites were concentrated within the maximum distance of 20 m of the nearest shelter site. Hares were more likely than cottontails to exploit crops, and their sites were distributed even greater than 80 m away from permanent cover patches. The habitat heterogeneity of agricultural ecosystems within the sympatry range could buffer the negative effects of external factors (climate, human disturbance and predation) on hares, and enhance the chances of exploitation of shared habitats by both species.  相似文献   

6.
1. European hares Lepus europaeus have declined throughout Europe since the 1960s. Possible reasons for this include agricultural intensification and changes in climate and predator numbers, but no clear consensus has been reached as to the relative importance of each of these. We aimed to identify factors associated with high and low hare numbers throughout Europe, to determine which could have caused population declines. 2. Results of 77 research papers from 12 European countries were summarized. Relationships between hare density and demographics and habitat, climate, hunting and predator variables were examined and quantified where possible. Temporal changes in factors identified as being associated with high or low numbers of hares were then examined to see if they could explain population declines. 3. Data from pastural habitats were limited, but densities of hares were low. Arable habitats had higher densities than mixed areas in spring, unless farming was intensive in which case densities were similar. In autumn the two habitats had similar densities. Field size, temperature, precipitation and hunting had no effect on density throughout Europe. Fecundity was affected by climate. 4. Arable land, various crops, fallow habitat and temperature were positively associated, and monoculture, precipitation and predators negatively associated with hare abundance. The relationship of field size, pasture and woodland with abundance depended on spatial scale. 5. Habitat changes caused by agricultural intensification are the ultimate cause of hare population declines. Effects of changes in climate or predator numbers are magnified by the loss of high-quality year-round forage and cover. Further research is required on how habitat changes affect fecundity and survival, and to identify which parameters have the greatest impact on population numbers. Farmland management policies that target the re-establishment of some of the habitat diversity lost within fields, farms and landscapes will help to reverse the decline of the European hare.  相似文献   

7.
Abstract: The fecal pellet-plot method has been used extensively for snowshoe hare (Lepus americanus) population studies across the species' range, but potential biases associated with the technique have not been addressed adequately. We studied hare pellet-plots in northern Idaho to quantify pellet decomposition rates across environmental gradients, and conducted feeding trials on captive hares to assess the role of diet on pellet production rates. We found that across our study area pellet numbers tended to be higher on plots with high vegetative cover, which likely was a reflection of hare habitat choice rather than lesser pellet decomposition in such habitat. A pellet decomposition experiment indicated that pellet persistence was negatively related to moisture level, and that pellets produced by hares during summer decomposed more quickly than those from winter. We found that only 19% of fecal pellets collected from plots located across northern Idaho were produced by hares during winter. There was a correlation between pellet numbers from plots that were pre-cleared 1 year earlier and estimated numbers of hares on 6 study areas. A similar correlation was lacking for pellet counts from uncleared plots, implying that hare population estimation via pellet-plot counts should involve plot pre-clearing. In captive studies, juvenile hares produced slightly fewer pellets per day per gram of food ingested than adults, but pellet production was similar across diets comprised of 10 different browse species. We conclude that for our study area the fecal pellet-plot method may be subject to notable pellet decomposition bias, and therefore recommend that use of the method elsewhere across the species' range be preceded by assessment of both the pellet-hare density relationship and pellet decomposition rates across habitats.  相似文献   

8.
In northern Italy, the native European hare (Lepus europaeus) and the introduced Eastern cottontail (Sylvilagus floridanus) can occur together at a local scale, as a result of cottontail introduction and expansion into the European hare range. Hare populations are limited in Italy by habitat loss, diseases, and most important by overhunting, and many areas within hare range in northern Italy are undergoing increasing anthropogenic impact. Therefore, quantitative studies on resource selection and exploitation by both species will be of great interest to evaluate the degree of habitat overlap and to search for exploitation competition evidences. We studied habitat selection during resting time by both species in two areas where they occur alone and in one area where they occur together. Habitat selection by the two species was examined at micro- and macro-habitat scales during autumn–winter and spring–summer. Both species selected ecotonal zones between arboriculture stands and crops and between arboriculture stands and spontaneous vegetation (i.e., herbaceous, bush, and woody permanent species), which were the less available in the area of sympatry. No habitat shifts were evident at macro-habitat level because the two species showed a differential micro-habitat use within patches. On the whole, it seems that habitat heterogeneity promoted daytime segregation between the two species. In particular, edges between crops and canopy habitats should be improved, thus reducing chance of intra- and inter-specific encounters.  相似文献   

9.
Survival and predation of snowshoe hares (Lepus americanus) has been widely studied, yet there has been little quantification of the changes in vulnerability of hares to specific predators that may result from seasonal changes in vegetation and cover. We investigated survival and causes of mortalities of snowshoe hares during the late increase, peak, and decline of a population in interior Alaska. From June 2008 to May 2012, we radio-tagged 288 adult and older juvenile hares in early successional and black spruce (Picea mariana) forests and, using known-fate methods in program MARK, evaluated 85 survival models that included variables for sex, age, and body condition of hares, as well as trapping site, month, season, year, snowfall, snow depth, and air temperature. We compared the models using Akaike’s information criterion with correction for small sample size. Model results indicated that month, capture site, and body condition were the most important variables in explaining survival rates. Survival was highest in July, and more generally during summer, when alternative prey was available to predators of hares. Low survival rates coincided with molting periods, breeding activity in the spring, and the introduction of juveniles to the sample population in the fall. We identified predation as the cause of mortality in 86% of hare deaths. When the source of predation could be determined, hares were killed more often by goshawks (Accipiter gentilis) than other predators in early successional forest (30%), and more often by lynx (Lynx canadensis) than other predators in black spruce forest (31%). Great horned owls (Bubo virginianus) and coyotes (Canis latrans) represented smaller proportions of hare predation, and non-predatory causes were a minor source (3%) of mortality. Because hares rely on vegetative cover for concealment from predators, we measured cover in predation sites and habitats that the hares occupied and concluded that habitat type had a greater influence on the sources of predation than the amount of cover in any given location within a habitat. Our observations illustrate the vulnerability of hares to predators in even the densest coniferous habitat available in the boreal forest, and indicate strong seasonal changes in the rates and sources of predation.  相似文献   

10.
The brown hare Lepus europaeus is a valued game species but also a species of conservation concern owing to its severe decline in abundance on farmland throughout Europe during the twentieth century. Changes in the farmland habitat and predation have both been cited as causative factors. Their relative roles have been unclear, but most conservation action has focused on improving habitat. We analyse data from a sequence of three unique studies (one experiment and two demonstrations) covering the period 1985–2006 in which control of several common predator species was undertaken to increase densities of wild game on farmland in England. Across the three studies, regression modelling of the proportional change in hare numbers between successive years showed that—after site, year differences and harvesting were accounted for—predator control was a significant determinant of hare population change. Where habitat improvement also took place, hares reached autumn densities that were exceptional for the UK and which could sustain substantial harvests. When predation control was stopped, hare densities fell, even where habitat improvements remained in place. This analysis demonstrates that even where farmland habitat is greatly improved, uncontrolled predation prevents hares making full use of its carrying capacity. This helps explain the mixed—and at best modest—success of agri-environment schemes in the UK and elsewhere in Europe to increase hare densities. Game-shooting estates, on which effective predator control takes place, probably have a special significance within the landscape as source areas for brown hares.  相似文献   

11.
During times of high activity by predators and competitors, herbivores may be forced to forage in patches of low‐quality food. However, the relative importance in determining where and what herbivores forage still remains unclear, especially for small‐ and intermediate‐sized herbivores. Our objective was to test the relative importance of predator and competitor activity, and forage quality and quantity on the proportion of time spent in a vegetation type and the proportion of time spent foraging by the intermediate‐sized herbivore European hare (Lepus europaeus). We studied red fox (Vulpes vulpes) as a predator species and European rabbit (Oryctolagus cuniculus) as a competitor. We investigated the time spent at a location and foraging time of hare using GPS with accelerometers. Forage quality and quantity were analyzed based on hand‐plucked samples of a selection of the locally most important plant species in the diet of hare. Predator activity and competitor activity were investigated using a network of camera traps. Hares spent a higher proportion of time in vegetation types that contained a higher percentage of fibers (i.e., NDF). Besides, hares spent a higher proportion of time in vegetation types that contained relatively low food quantity and quality of forage (i.e., high percentage of fibers) during days that foxes (Vulpes vulpes) were more active. Also during days that rabbits (Oryctolagus cuniculus) were more active, hares spent a higher proportion of time foraging in vegetation types that contained a relatively low quality of forage. Although predation risk affected space use and foraging behavior, and competition affected foraging behavior, our study shows that food quality and quantity more strongly affected space use and foraging behavior than predation risk or competition. It seems that we need to reconsider the relative importance of the landscape of food in a world of fear and competition.  相似文献   

12.
Changes in land use patterns and vegetation can trigger ecological change in occupancy and community composition. Among the potential ecological consequences of land use change is altered susceptibility to occupancy by invasive species. We investigated the responses of three introduced mammals (red deer, Cervus elaphus; wild boar, Sus scrofa; and European hare, Lepus europaeus) to replacement of native vegetation by exotic pine plantations in the Patagonian forest‐steppe ecotone using camera‐trap surveys (8633 trap‐days). We used logistic regression models to relate species presence with habitat variables at stand and landscape scales. Red deer and wild boar used pine plantations significantly more frequently than native vegetation. In contrast, occurrence of European hares did not differ between pine plantations and native vegetation, although hares were recorded more frequently in firebreaks than in plantations or native vegetation. Presence of red deer and wild boar was positively associated with cover of pine plantations at the landscape scale, and negatively associated with mid‐storey cover and diversity at the stand scale. European hares preferred sites with low arboreal and mid‐storey cover. Our results suggest that pine plantations promote increased abundances of invasive species whose original distributions are associated with woodlands (red deer and wild boar), and could act as source or pathways for invasive species to new areas.  相似文献   

13.
Knowledge on diurnal locomotor activity pattern in wild nocturnal medium-sized mammals, such as the European hare (Lepus europaeus) is scarce. In this study, we tracked nine European hares during the vegetation period using GPS-transmitters. In particular, we focused on the question how the timing of sunset and sunrise influences the activity peaks in this species. The horal distances between two consecutive hare positions were used as a measure of locomotor activity. European hares showed two distinct peaks in their daily activity. If sunset or sunrise were earlier, the maximum activity peaks of individual European hares occurred after sunset or sunrise, whereas activity peaks were shifted before sunset or sunrise when sunset or sunrise were later. During summer, when the nights are probably too short to allow the hares to cover their energetic requirements, the study animals regularly showed activity peaks in full daylight. In conclusion, our results imply that, although daylight regime normally regulates the diurnal locomotor activity pattern in mammals, other additional factors may play a role in modifying this regulation in European hares during summer.  相似文献   

14.
ABSTRACT Snowshoe hares (Lepus americanus) are an important prey species for Canada lynx (Lynx canadensis) and are considered critical for lynx population persistence. Determination of snowshoe hare distribution and abundance is needed by land management agencies for lynx conservation. An accepted approach for estimating snowshoe hare abundance is the use of fecal-pellet plot counts. Locally derived regression equations are preferred for accurate calibration of pellet counts to snowshoe hare density due to local differences in pellet deposition and decomposition. We used linear regression to examine correlations between snowshoe hare density, as determined by mark–recapture estimates, and pellet plot counts on both uncleared plots and annually cleared plots on the Bridger-Teton National Forest, western Wyoming, USA. We found significant correlations between snowshoe hare density estimates and fecal pellet counts for both uncleared and annually cleared pellet counts; however, the relationship was stronger (higher r) when using pellet counts from annually cleared plots. In addition, we found that adjusting the buffer size by omitting hard habitat edges (not used by hares) around trapping grids improved correlations between snowshoe hare density and fecal pellet counts for both uncleared plots and annually cleared plots. Though precision is sacrificed when using uncleared plots, they may be useful as a coarse index of habitat use by snowshoe hares. Our derived regression equations may be useful to identify important foraging habitat for Canada lynx in western Wyoming. Land managers responsible for conserving snowshoe hare habitat in western Wyoming may use these equations to monitor changes in hare populations among habitats and during prescribed management actions.  相似文献   

15.
Abstract: We related winter habitat selection by Canada lynx (Lynx canadensis), relative abundance of snowshoe hares (Lepus americanus), and understory stem densities to evaluate whether lynx select stands with the greatest snowshoe hare densities or the greatest prey accessibility. Lynx (3 F, 3 M) selected tall (4.4-7.3 m) regenerating clear-cuts (11-26 yr postharvest) and established partially harvested stands (11-21 yr postharvest) and selected against short (3.4-4.3 m) regenerating clear-cuts, recent partially harvested stands (1-10 yr), mature second-growth stands (>40 yr), and roads and their edges (30 m on either side of roads). Lynx selected stands that provided intermediate to high hare density and intermediate cover for hares (i.e., prey access) but exhibited lower relative preference for stand types with highest hare densities where coniferous saplings exceeded 14,000 stems/ha.  相似文献   

16.
Abstract Effectively managing habitat for threatened populations of Canada lynx (Lynx canadensis) requires knowledge of habitat conditions that provide for the ecological needs of lynx. We snow-tracked lynx to identify habitat conditions associated with hunting behavior and predation during winters of 2002–2003 and 2003–2004 in the northern Cascade Range in Washington state, USA. We recorded number and success of predation attempts, prey species killed, and trail sinuosity on 149 km of lynx trails. Lynx killed snowshoe hares (Lepus americanus), red squirrels (Tamiasciurus hudsonicus), and cricetids more than expected in Englemann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests, where snowshoe hare densities were highest. Lynx killed prey less than expected in Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) forests and forest openings. We used the sinuosity of lynx trails as an index of quality of habitat hunted. Lynx trails that included predation attempts were more sinuous than trail segments without predation attempts. Lynx trails had greater sinuosity in forest stands with high hare densities dominated by Engelmann spruce and subalpine fir than in stands with low hare densities dominated by Douglas-fir and ponderosa pine or in forest openings. We encourage forest managers to maintain or create sufficient understory cover to support high densities of snowshoe hares as foraging habitat for lynx.  相似文献   

17.
Spatial variation in habitat riskiness has a major influence on the predator–prey space race. However, the outcome of this race can be modulated if prey shares enemies with fellow prey (i.e., another prey species). Sharing of natural enemies may result in apparent competition, and its implications for prey space use remain poorly studied. Our objective was to test how prey species spend time among habitats that differ in riskiness, and how shared predation modulates the space use by prey species. We studied a one‐predator, two‐prey system in a coastal dune landscape in the Netherlands with the European hare (Lepus europaeus) and European rabbit (Oryctolagus cuniculus) as sympatric prey species and red fox (Vulpes vulpes) as their main predator. The fine‐scale space use by each species was quantified using camera traps. We quantified residence time as an index of space use. Hares and rabbits spent time differently among habitats that differ in riskiness. Space use by predators and habitat riskiness affected space use by hares more strongly than space use by rabbits. Residence time of hare was shorter in habitats in which the predator was efficient in searching or capturing prey species. However, hares spent more time in edge habitat when foxes were present, even though foxes are considered ambush predators. Shared predation affected the predator–prey space race for hares positively, and more strongly than the predator–prey space race for rabbits, which were not affected. Shared predation reversed the predator–prey space race between foxes and hares, whereas shared predation possibly also released a negative association and promoted a positive association between our two sympatric prey species. Habitat riskiness, species presence, and prey species’ escape mode and foraging mode (i.e., central‐place vs. noncentral‐place forager) affected the prey space race under shared predation.  相似文献   

18.
Old‐growth western larch has been degraded throughout much of its historic range due to extensive timber harvest and fire suppression. We examined the effects of a restoration treatment of western larch on snowshoe hares, a denizen of the boreal forest serving as a focal animal species to indicate the health of the restored ecosystem. We implemented a restoration treatment using “doughnut thinning” to accelerate development of old‐growth attributes in larch stands and simultaneously examined the short‐term effects on snowshoe hare density, survival, and movement. Although typical forest management activities tend to have adverse effects on hares especially in the short term, we found that the restoration treatment did not affect hare density or survival in the short term. In addition, despite significant decreases in cover coinciding with the larch needle drop, we found evidence of year‐round immigration into larch stands by hares suggesting larch stands are suitable year‐round hare habitat. Taken together, our findings suggest that a larch restoration treatment designed to accelerate the development of old‐growth attributes can be implemented so as to have no measurable short‐term detrimental effects on hares.  相似文献   

19.
Abstract: Snowshoe hares (Lepus americanus) are an important prey species and a dominant herbivore across much of their North American range, and researchers have questioned the influences of forestry practices that alter habitat for hares and the potential community-level effects on carnivores. We examined the effects of precommercial thinning (PCT) from 1 to 11 years posttreatment on snowshoe hares. In the commercial forests of northern Maine, USA, we counted and cleared hare pellets twice a year during 2001 and 2002 on >46 km of pellet transects across 30 regenerating conifer stands (17 treated with PCT) previously treated with an aerial application of herbicide. We compared densities of snowshoe hare pellets among 3 development classes with (1 yr after thinning, 6 yr after thinning, and 11 yr after thinning) and without thinning (stands with a similar history of clearcut and herbicide treatment but no thinning). During both years, densities of hares were lower in stands treated with PCT than in similar unthinned stands across the 3 development classes and during both leaf-off and leaf-on seasons (P < 0.001). Within both thinned and unthinned stands, hare density was greatest in stands in the 1-year development class when compared to the 6-year and 11-year development classes, but a statistical difference (P = 0.048) among classes was evident only during leaf-off seasons. Precommercial thinning was associated with densities of snowshoe hares that were approximately half of those in similar unthinned stands up to at least 11 years posttreatment; however, thinned stands may retain densities of hares greater than stands managed using other forest harvesting regimes. Our results apply to core portions of stands with crop trees spaced at 1.8–2.4-m intervals following complete overstory removal and herbicide treatment. We advocate caution when applying our results to other thinning regimes or across broader spatial scales.  相似文献   

20.
In this study we accumulate evidence that brown hare competes with brent goose for food resources in a temperate salt marsh. We show that both species overlap in habitat use and share food plants. The two herbivores mainly used the common habitat at different times of the day, with hares active in the dark and geese during the daylight. During the morning and evening, however, the habitat was exploited simultaneously. Food availability was manipulated by excluding brent geese on both small-scale (30 m2) and large-scale (0.96 ha) plots, while hares had free access everywhere. Exclusion of brent geese enhanced the level of utilisation by hares in both Festuca and Puccinellia dominated marshes, which are among the most intensively grazed parts of the salt marsh. The increase in hare grazing pressure following goose exclusion was stronger, when the adjacent control plots had attracted more goose visitation. When geese were excluded, the decrease in Festuca consumption by geese was completely matched by increased hare grazing, while for Puccinellia only part of the `surplus' was harvested. Enhanced levels of hare utilisation were not due to geese interfering directly with hare, nor due to hares avoiding goose droppings. Considering the interaction from the other perspective, hares were observed to disturb geese effectively in every spring. This might have reduced exploitation by geese of the shared resources. On the basis of our experimental results, we conclude that in this salt- marsh system competition for food with brent geese plays a role in the habitat use of hares, and that hares can reduce goose exploitation of shared habitats. Received: 30 March 1998 / Accepted: 6 July 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号