首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition efficiency (antioxidant activity) of hydroxy derivatives of coumarin, such as esculetin, dicumarol, and fraxetin, was studied in the methemalbumin-H2O2-tetramethylbenzidine (TMB) pseudoperoxidase system at 20°C in a buffered physiological solution (pH 7.4) containing 6% DMF and 0.25% DMSO. The inhibitor’s efficiency was quantitatively characterized by the inhibition constants (K i, μM) and the inhibition degree (%). The K i values for esculetin, dicumarol, and fraxetin were 9.5, 15, and 26 μM, respectively. Esculetin and fraxetin inhibited pseudoperoxidase oxidation of TMB in a noncompetitive manner; dicumarol, in a mixed manner. The inhibiting activity of esculetin in peroxidase-catalyzed TMB oxidation at pH 6.4 is characterized by a K i value equal to 1.15 μM, and the inhibition process is competitive. Esculetin was found to be the most effective antioxidant of plant origin among all derivatives previously studied in model biochemical systems.  相似文献   

2.
We cloned the gene, CdPAL1, from Cistanche deserticola callus using RACE PCR with degenerate primers that were designed based on a multiple sequence alignment of known PAL genes from other plant species. The gene shows high homology to other known PAL genes registered in GenBank. The recombinant protein exhibited MichaelisMenten kinetics with a K m of 0.1013 mM, V max of 4.858 μmol min−1, K cat of 3.36 S−1, and K cat/K m is 33,168 M−1 S−1. The enzyme had an optimal pH of 8.5 and an activation energy of 38.92 kJ mol−1 when l-Phenylalanine was used as a substrate; l-tyrosine cannot be used as substrate for this protein. The optimal temperature was 55°C, and the thermal stability results showed that, after a treatment at 70°C for 20 min, the protein retained 87% activity, while a treatment at 75°C for 20 min resulted in a loss of over 85% of the enzyme activity. Treatment with heavy metal ions (Hg2+, Pb2+, and Zn2+) showed remarkable inhibitory effects. Among the intermediates from the lignin (cinnamyl alcohol, cinnamyl aldehyde, coniferyl aldehyde, coniferyl alcohol), phenylpropanoid (cinnamic acid, coumaric acid, caffeic acid, and chlorogenic acid) and phenylethanoid (tyrosol and salidroside) biosynthetic pathways, only cinnamic acid showed strong inhibitory effects against CdPAL1 activity with a K i of 8 μM. Competitive inhibitor AIP exhibited potent inhibition with K i = 0.056 μM.  相似文献   

3.
The initial rates of ATP synthesis catalyzed by tightly coupled Paracoccus denitrificans plasma membrane were measured. The reaction rate was hyperbolically dependent on the substrates, ADP and inorganic phosphate (Pi). Apparent K m values for ADP and Pi were 7–11 and 60–120 μM, respectively, at saturating concentration of the second substrate (pH 8.0, saturating Mg2+). These values were dependent on coupling efficiency. The substrate binding in the ATP synthesis reaction proceeds randomly: K m value for a given substrate was independent of the concentration of the other one. A decrease of electrochemical proton gradient by the addition of malonate (when succinate served as the respiratory substrate) or by a decrease of steady-state level of NADH (when NADH served as the respiratory substrate) resulted in a proportional decrease of the maximal rates and apparent K m values for ADP and Pi (double substitution, ping-pong mechanism). The kinetic scheme for ATP synthesis was compared with that described previously for the proton-translocating ATP hydrolysis catalyzed by the same enzyme preparation (T. V. Zharova and A. D. Vinogradov (2006) Biochemistry, 45, 14552–14558).  相似文献   

4.
Sah S  Phale PS 《Biodegradation》2011,22(3):517-526
1-Naphthol 2-hydroxylase (1-NH) which catalyzes the conversion of 1-naphthol to 1,2-dihydroxynaphthalene was purified to homogeneity from carbaryl-degrading Pseudomonas sp. strain C6. The enzyme was found to be a homodimer with subunit molecular weight of 66 kDa. UV, visible and fluorescence spectral properties, identification of flavin moiety by HPLC as FAD, and reconstitution of apoenzyme by FAD suggest that enzyme is FAD-dependent. 1-NH accepts electron from NADH as well as NADPH. Besides 1-naphthol (K m, 9.1 μM), the enzyme also accepts 5-amino 1-naphthol (K m, 6.4 μM) and 4-chloro 1-naphthol (K m, 2.3 μM) as substrates. Enzyme showed substrate inhibition phenomenon at high concentration of 1-naphthol (K i, 283 μM). Stoichiometric consumption of oxygen and NADH, and biochemical properties suggest that 1-NH belongs to FAD containing external flavomonooxygenase group of oxido-reductase class of enzymes. Based on biochemical and kinetic properties, 1-NH from Pseudomonas sp. strain C6 appears to be different than that reported earlier from Pseudomonas sp. strain C4. Chemical modification and protection by 1-naphthol and NADH suggest that His, Arg, Cys, Tyr and Trp are at or near the active site of 1-NH.  相似文献   

5.
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.  相似文献   

6.
The development of specific catalytic inhibitors for the serine protease urokinase-type plasminogen activator (uPA) has been hindered due to difficulties in producing sufficient amounts of active recombinant uPA that is catalytically equivalent to native uPA. The purpose of this study was to develop an efficient system for the expression of recombinant human uPA that exhibits comparable proteolytic activity to that of the native protein. Since post-translational modifications (e.g. glycosylations) of uPA are necessary for efficient proteolytic activity, we have used a mammalian cell line [Chinese hamster ovary (CHO)-S] to express recombinant human uPA. CHO-S cells were selected to stably express full-length recombinant human uPA containing a hexahistidine tag at its C-terminus to permit purification by nickel-based affinity chromatography. Secretion of recombinant uPA into the culture media was confirmed by immunoblotting and the presence of an N-linked glycosylation was confirmed by PNGase sensitivity. Enzymatic activity of purified recombinant uPA was demonstrated using zymography and quantitatively compared to native uPA by kinetic analysis using an uPA-specific substrate. Native uPA and the recombinant uPA demonstrated comparable Km values (55.7 and 39 μM, respectively). Furthermore, inhibition studies using benzamidine resulted in a Ki of 195 μM for native uPA, while recombinant uPA had a Ki of 112 μM. These data indicate that recombinant human uPA expressed by CHO-S cells is functionally comparable to native uPA.  相似文献   

7.
Bacteroids formed by Mesorhizobium ciceri CC 1192 in symbiosis with chickpea plants (Cicer arietinum L.) contained a single form of citrate synthase [citrate oxaloacetate-lyase (CoA-acetylating) enzyme; EC 4.1.3.7], which had the same electrophoretic mobility as the enzyme from the free-living cells. The citrate synthase from CC 1192 bacteroids had a native molecular mass of 228 ± 32 kDa and was activated by KCl, which also enhanced stability. Double reciprocal plots of initial velocity against acetyl-CoA concentration were linear, whereas the corresponding plots with oxaloacetate were nonlinear. The K m value for acetyl-CoA was 174 μM in the absence of added KCl, and 88 μM when the concentration of KCl in reaction mixtures was 100 mM. The concentrations of oxaloacetate for 50% of maximal activity were 27 μM without added KCl and 14 μM in the presence of 100 mM KCl. Activity of citrate synthase was inhibited 50% by 80 μM NADH and more than 90% by 200 μM NADH. Inhibition by NADH was linear competitive with respect to acetyl-CoA (K is = 23.1 ± 3 μM) and linear noncompetitive with respect to oxaloacetate (K is = 56 ± 3.8 μM and K ii = 115 ± 15.4 μM). NADH inhibition was relieved by NAD+ and by micromolar concentrations of 5′-AMP. In the presence of 50 or 100 mM KCl, inhibition by NADH was apparent only when the proportion of NADH in the nicotinamide adenine dinucleotide pool was greater than 0.6. In the microaerobic environment of bacteroids, NADH may be at concentrations that are inhibitory for citrate synthase. However, this inhibition is likely to be relieved by NAD+ and 5′-AMP, allowing carbon to enter the tricarboxylic acid cycle. Received: 14 July 1999 / Accepted: 20 September 1999  相似文献   

8.
Competitive inhibition of soybean urease by 11 cyclic -triketones was studied in aqueous solutions at pH 7.4 and 36°C. This process was characterized quantitatively by the inhibition constant (K i), which showed a strong dependence on the structure of the organic chelating agents (nickel atoms in urease) and varied from 58.4 to 847 M. Under similar conditions, the substrate analogue (hydroxyurea) acted as a weak urease inhibitor (K i = 6.47 mM). At 20°C, competitive inhibition of urease with the ligand of nickel atoms (fluoride anion) was pH-dependent. At pH 3.85–6.45, the value of K i for the process ranged from 36.5 to 4060 M. Three nontoxic cyclic -triketones with K i values of 58.4, 71.4, and 88.0 M (36°C) were the most potent inhibitors of urease. Their efficacy was determined by the presence of three >C=O– groups in the molecule and minimum steric hindrances to binding with metal sites in soybean urease.  相似文献   

9.
Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N 6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1 K i = 1050 nM, hA2A K i = 1550 nM, hA2B EC50 = 82 nM, hA3 K i > 5 μM) and its 2-chloro analogue 23 (hA1 K i = 3500 nM, hA2A K i = 4950 nM, hA2B EC50 = 210 nM, hA3 K i > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis.  相似文献   

10.
Li J  Li Z  Li T  Lin L  Zhang Y  Guo L  Xu Y  Zhao W  Wang P 《Biochemistry. Biokhimii?a》2012,77(2):194-200
O-Linked N-acetylglucosamine (O-GlcNAc) modification of serines/threonines on cytoplasmic proteins is a significant signal regulating cellular processes such as cell cycle, cell development, and cell apoptosis. O-GlcNAcase (OGA) is responsible for the removal of O-GlcNAc, and it thus plays a critical role in O-GlcNAc metabolism. Interestingly, OGA can be cleaved by caspase-3 into two fragments during apoptosis, producing an N-terminal fragment (1–413 a.a.), termed nOGA. Here, using 4-MU-GlcNAc (4-methylumbelliferyl 2-acetamido-2-deoxy-β-D-glucopyranoside) as substrate, we found that the nOGA fragment retains high glycosidase activity. To probe the role of nOGA in apoptosis, it is essential to develop a potent and specific nOGA inhibitor. However, many reported inhibitors active at nanomolar concentrations (including PUGNAc, STZ, GlcNAc-statin, and NAG-thiazoline) against full-length OGA were not potent for nOGA. Next, we screened a small triazole-linked carbohydrate library and first identified compound 4 (4-pyridyl-1-(2′-deoxy-2′-acetamido-β-D-glucopyranosyl)-1,2,3-triazole) as a potent and competitive inhibitor for nOGA. This compound shows 15-fold selectivity for nOGA (K i = 48 μM) over the full-length OGA (K i = 725 μM) and 10-fold selectivity over human lysosomal β-hexosaminidase A&B (Hex A&B) (K i = 502 μM). These results reveal that compound 4 can be used as a potent and selective inhibitor for probing the role of nOGA in biological systems.  相似文献   

11.
Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N 6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1 K i = 1050 nM, hA2A K i = 1550 nM, hA2B EC50 = 82 nM, hA3 K i > 5 μM) and its 2-chloro analogue 23 (hA1 K i = 3500 nM, hA2A K i = 4950 nM, hA2B EC50 = 210 nM, hA3 K i > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary artery disorders and atherosclerosis. This article has previously been published in issue 4/4, under doi:.  相似文献   

12.
To assess the activation of the charybdotoxin-insensitive K+ channel responsible for Regulatory Volume Decrease (RVD) after substantial volume increases, we measured intracellular pH (pH i ), intracellular calcium ([Ca2+] i ) and inhibitors of kinases and phosphoprotein phosphatases in guinea pig jejunal villus enterocytes in response to volume changes. Fluorescence spectroscopy was used to measure pH i and [Ca2+] i of cells in suspension, loaded with 2,7,bis-carboxyethyl-5-6-carboxyfluorescein and Indo-1, respectively, and cell volume was assessed using electronic cell sizing. A modest 7% volume increase or substantial 15 to 20% volume increase caused [Ca2+] i to increase proportionately but the 7% increase caused alkalinization while the larger increases resulted in acidification of ≃0.14 pH units. Following a 15% volume increase, 1-N-0-bis (5-isoquinoline-sulfonyl)-N-methyl-l-4-phenyl-piperazine (KN-62, 50 μm), an inhibitor of Ca2+/calmodulin kinase II, blocked RVD. Gramicidin (0.5 μm) bypassed this inhibition suggesting that the K+ channel had been affected by the KN-62. RVD after a modest 7% volume increase was not influenced by KN-62 unless the cell was acidified. Okadaic acid, an inhibitor of phosphoprotein phosphatases 1 and 2A, accelerated RVD after a 20% volume increase; inhibition of RVD generated by increasing the K+ gradient was bypassed by okadaic acid. Tyrosine kinase inhibitor, genistein (100 μm) had no effect on RVD after 20% volume increases. We conclude that activation of charybdotoxin-insensitive K+ channels utilized for RVD after substantial (>7%) `nonphysiological' volume increases requires phosphorylation mediated by Ca2+/calmodulin kinase II and that increases in cytosolic acidification rather than larger increases in [Ca2+] i are a critical determinant of this activation. Received: 30 March 1999/Revised: 6 July 1999  相似文献   

13.
Summary Several metabolic compounds have been found to be competitive inhibitors of the anomerase activity of phosphoglucose isomerase (EC 5.3.1.9).Ki values for erythrose 4-phosphate, 6-phosphogluconate, and fructose 1,6-bisphosphate for the anomerase reaction are 0.32 μM, 21 μM, and 84 μM respectively at 0° and pH 8.2. A significant difference between the fructose, 1,6-bisphosphate inhibition constants for both activities was found (ki(isomerase)=800 μM and Ki(anomerase)=84 μM). Also the Km values for both activities were found to be significantly different (Km(isomerase)=140 μM and Km(anomerase)=3.6 μM). Attempts to independently alter the anomerase to isomerase activity ratio through protein modification yielded mixed results. While several modifying reagents destroyed the catalytic activities at identical rates, inactivation by iodoacetamide or pyridoxal 5′ phosphate sensitized photo-oxidation displayed differential initial effects on the two activities with the anomerase activity being the less affected. These data support the theory that an imidazole residue is catalytically important for isomerization, but less so for anomerization.  相似文献   

14.
A comparative kinetic study on the poly(gallic acid disulfide) (poly(DSGA)) inhibition of the iodide ion oxidation and on the 2-hydroxy-3,5-di-tert-butyl-N-phenylaniline (butaminophene) inhibition of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation involving human thyroid peroxidase (hTPO) and horseradish peroxidase (HRP) was performed. The inhibition processes were characterized with the inhibition constantsK i and stoichiometric inhibition coefficientsf, indicating the number of radical particles perishing on one inhibitor molecule. In the case of poly(DSGA), theK i values for the I oxidation were 0.60 and 0.04 μM, and the coefficientsf were 13.6 and 16.5 for hTPO and HRP, respectively, which evidences the regeneration and high effectiveness of the polymeric inhibitor. In the case of butaminophene, theK i values for TMB oxidation were 38 and 46 μM for hTPO and HRP, respectively. The coefficientsf were 1.33 and 1.47, respectively, to reveal that butaminophene does not regenerate. The inhibition mechanisms for I and TMB oxidation involving the two peroxidases are discussed.  相似文献   

15.
Tyrosinase is a key enzyme in the biosynthesis of melanin, and the use of inhibitors against tyrosinase can prevent hyperpigmentation by inhibiting enzymatic oxidation. However, the current use of tyrosine inhibitors is limited by their low activities and high toxicities. The aim of the present research was to develop novel whitening agents, or tyrosinase-targeted medicine, from a submerged culture of the fungus Ganoderma lucidum. Methyl lucidenate F was isolated from the ethanol-soluble-acidic components (ESACs) of G. lucidum, with the structure of ESACs elucidated via UV, LC-MS, and 13C-NMR spectral analysis. The tyrosinase inhibitory activity was measured using catechol as a substrate. Methyl lucidenate F displayed uncompetitive inhibition of the potato tyrosinase activity, for which Lineweaver-Burk plots revealed a maximum reaction rate (V max) of 0.4367/min, Michaelis constant (K m) of 6.765 mM and uncompetitive inhibition constant (K i) of 19.22 μM. Meanwhile, methyl lucidenate F (tetra cyclic triterpenoid) exhibited high tyrosinase inhibitory activity, with an IC50 of 32.23 μM. These results suggest that methyl lucidenate F may serve as a potential candidate for skin-whitening agents.  相似文献   

16.
In order to clearly establish the properties of the enzymes responsible for hexose phosphorylation we have undertaken the separation and characterization of these enzymes present in tomato fruit (Martinez-Barajas and Randall 1996). This report describes the partial purification and characterization of glucokinase (EC. 2.7.1.1) from young green tomato fruit. The procedure yielded a 360-fold enrichment of glucokinase. Tomato fruit glucokinase is a monomer with a molecular mass of 53 kDa. Glucokinase activity was optimal between pH 7.5 and 8.5, preferred ATP as the phosphate donor (K m = 0.223 mM) and exhibited low activity with GTP or UTP. The tomato fruit glucokinase showed highest affinity for glucose (K m =65 μM). Activity observed with glucose was 4-fold greater than with mannose and 50-fold greater than with fructose. The tomato fruit glucokinase was sensitive to product inhibition by ADP (K i = 36 μM). Little inhibition was observed with glucose 6-phosphate (up to 15 mM) at pH 8.0; however, at pH 7.0 glucokinase activity was inhibited 30–50% by physiological concentrations of glucose 6-phosphate. Received: 4 October 1997 / Accepted: 10 January 1998  相似文献   

17.
S. K. Goers  R. A. Jensen 《Planta》1984,162(2):117-124
The reaction catalyzed by chorismate mutase (EC 5.4.99.5) is a crucial step for biosynthesis of two aromatic amino acids as well as for the synthesis of phenylpropanoid compounds. The regulatory properties of two chorismate-mutase isoenzymes expressed in Nicotiana silvestris Speg. et Comes are consistent with their differential roles in pathway flow routes ending with l-phenylalanine and l-tyrosine on one hand (isoenzyme CM-1), and ending with secondary metabolites on the other hand (isoenzyme CM-2). Isoenzyme CM-1 was very sensitive to allosteric control by all three aromatic amino acids. At pH 6.1, l-tryptophan was a potent allosteric activator (K a =1.5 M), while feedback inhibition was effected by l-tyrosine (K i =15 M) or by l-phenylalanine (Ki=15 M). At pH 6.1, all three effectors acted competitively, influencing the apparent K m for chorismate. All three allosteric effectors protected isoenzyme CM-1 at pH 6.1 from thermal inactivation at 52° C. l-Tryptophan abolished the weak positive cooperativity of substrate binding found with isoenzyme CM-1 only at low pH. At pH 7.2, the allosteric effects of l-tyrosine and l-tryptophan were only modestly different, in striking contrast to results obtained with l-phenylalanine. At pH 7.2 (i) the K i for l-phenylalanine was elevated over 30-fold to 500 M, (ii) the kinetics of inhibition became non-competitive, and (iii) l-phenylalanine now failed to protect isoenzyme CM-1 against thermal inactivation. l-Phenylalanine may act at different binding sites depending upon the intracellular pH milieu. In-vitro data indicated that the relative ability of allosteric activation to dominate over allosteric inhibition increases markedly with both pH and temperature. The second isoenzyme, CM-2, was inhibited competitively by caffeic acid (K i =0.2 mM). Aromatic amino acids failed to affect CM-2 activity over a broad range of pH and temperature. Inhibition curves obtained in the presence of caffeic acid were sigmoid, yielding an interaction coefficient (from Hill plots) of n=1.8.Abbreviation DAHP synthase 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase  相似文献   

18.
Of 13 compounds tested, 11 inhibited malic enzyme activity in Mucor circinelloides, to some degree, at 5 mM. Four of these inhibitors (tartronic acid, morin, catechin and 2,5-dihydroxybenzoic acid) were studied further. Tartronic acid, morin and catechin were competitive inhibitors of malic enzyme (with respect to malate), with apparent Ki values of 0.04 mM, 5 μM and 0.6 mM, respectively. 2,5-Dihydroxybenzoic acid was a non-competitive inhibitor, with respect to malate, and had an apparent Ki value of 0.8 mM. Morin and tartronic acid did not inhibit any other NADPH-generating enzyme studied, although both inhibited malate dehydrogenase. The inhibitory actions of catechin and 2,5-dihydroxybenzoic acid were less specific. All four compounds inhibited malic enzyme, to some extent, when included in the culture medium. This inhibition was not as great as in vitro however and was insufficient to have an effect on lipid metabolism in M. circinelloides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Since Fip1 is phosphoprotein we investigated whether it is a substrate for protein kinase CK2. According to the amino acid sequence Fip1 harbours twenty putative CK2 phosphorylation sites. Here we have report characterization of Fip1 as a substrate for both forms of CK2. Fip1 serves as a substrate for both the recombinant CK2α ′ (K m 1.28 μM) and holoenzyme (K m 1.4 μM) but not for CK1. By MALDI-MS we identified the two serine residues at positions 73 and 77 as the possible in vitro phosphorylation sites. These data may help to elucidate the role of Fip1 in the mRNA 3'-OH polyadenylation process and the involvement of CK2 mediated phosphorylation in regulation of interactions and activity members of cleavage/polyadenylation factor (CPF) complex.  相似文献   

20.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein contains a canonical ATP-binding cassette (ABC) signature motif, LSGGQ, in nucleotide binding domain 1 (NBD1) and a degenerate LSHGH in NBD2. Here, we studied the contribution of the conserved residues G551 and G1349 to the pharmacological modulation of CFTR chloride channels by phloxine B using iodide efflux and whole-cell patch clamp experiments performed on the following green fluorescent protein (GFP)-tagged CFTR: wild-type, delF508, G551D, G1349D, and G551D/G1349D double mutant. We found that phloxine B stimulates and inhibits channel activity of wild-type CFTR (Ks = 3.2 ± 1.6 μM, Ki = 38 ± 1.4 μM) and delF508 CFTR (Ks = 3 ± 1.8 μM, Ki = 33 ± 1 μM). However, CFTR channels with the LSGDQ mutated motif (mutation G551D) are activated (Ks = 2 ± 1.13 μM) but not inhibited by phloxine B. Conversely, CFTR channels with the LSHDH mutated motif (mutation G1349D) are inhibited (Ki = 40 ± 1.01 μM) but not activated by phloxine B. Finally, the double mutant G551D/G1349D CFTR failed to respond not only to phloxine B stimulation but also to phloxine B inhibition, confirming the importance of both amino acid locations. Similar results were obtained with genistein, and kinetic parameters were determined to compare the pharmacological effects of both agents. These data show that G551 and G1349 control the inhibition and activation of CFTR by these agents, suggesting functional nonequivalence of the signature motifs of NBD in the ABC transporter CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号