首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The conversion of lignocellulose into fermentable sugars is considered a promising alternative for increasing ethanol production. Higher fermentation yield has been achieved through the process of simultaneous saccharification and fermentation (SSF). In this study, a comparison was performed between the yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus for their potential use in SSF process. Three strains of S. cerevisiae were evaluated: two are widely used in the Brazilian ethanol industry (CAT-1 and PE-2), and one has been isolated based on its capacity to grow and ferment at 42 °C (LBM-1). In addition, we used thermotolerant strains of K. marxianus. Two strains were obtained from biological collections, ATCC 8554 and CCT 4086, and one strain was isolated based on its fermentative capacity (UFV-3). SSF experiments revealed that S. cerevisiae industrial strains (CAT-1 and PE-2) have the potential to produce cellulosic ethanol once ethanol had presented yields similar to yields from thermotolerant strains. The industrial strains are more tolerant to ethanol and had already been adapted to industrial conditions. Moreover, the study shows that although the K. marxianus strains have fermentative capacities similar to strains of S. cerevisiae, they have low tolerance to ethanol. This characteristic is an important target for enhancing the performance of this yeast in ethanol production.  相似文献   

3.
The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here, we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modelling and optimisation methods. Our model reveals the organism’s potential for industrial application and metabolic engineering. Modelling results imply that the aeration regime can be used as a tool to optimise product yield and flux distribution in K. marxianus. Also rebalancing NADH and NADPH utilisation can be used to improve the efficiency of substrate conversion. Xylose is identified as a biotechnologically promising substrate for K. marxianus.  相似文献   

4.
In the present work, a thermophilic esterase from Thermus thermophilus HB27 was cloned into Kluyveromyces marxianus and into Kluyveromyces lactis using two different expression systems, yielding four recombinant strains. K. lactis showed the highest esterase expression levels (294 units per gram dry cell weight, with 65% of cell-bound enzyme) using an episomal system with the PGK promoter and terminator from Saccharomyces cerevisiae combined with the K. lactis k1 secretion signal. K. marxianus showed higher secretion efficiency of the heterologous esterase (56.9 units per gram dry cell weight, with 34% of cell-bound enzyme) than K. lactis. Hydrolytic activities for the heterologous esterases were maximum at pH values between 8.0 and 9.0 for both yeast species and at temperatures of 50 °C and 45 °C for K. marxianus and K. lactis, respectively. When compared to previously published data on this same esterase produced in the original host or in S. cerevisiae, our results indicate that Kluyveromyces yeasts can be considered good hosts for the heterologous secretion of thermophilic esterases, which have a potential application in biodiesel production or in resolving racemates.  相似文献   

5.
Kluyveromyces marxianus is thermotolerant yeast that is able to utilize a wider range of substrates and has greater thermal tolerance than most other yeast species. K. marxianus can assimilate xylose, but its ability to produce ethanol from xylose in oxygen-limited environments is poor. In the present study, the K. marxianus xylose reductase (KmXR) gene (Kmxyl1) was cloned and the recombinant enzyme was characterized to clarify the factors that limit xylose fermentation in K. marxianus NBRC1777. KmXR is a key enzyme in the xylose metabolism of K. marxianus, which was verified by disruption of the Kmxyl1 gene. The Km of the recombinant KmXR for NADPH is 65.67 μM and KmXR activity is 1.295 U/mg, which is lower than those of most reported yeast XRs, and the enzyme has no activity with coenzyme NADH. This result demonstrates that the XR from K. marxianus is highly coenzyme specific; combined with the extremely low XDH activity of K. marxianus with NADP+, the limitation of xylose fermentation is due to a redox imbalance under anaerobic conditions and low KmXR activity.  相似文献   

6.
The dairy yeast Kluyveromyces marxianus is a promising cell factory for producing bioethanol and heterologous proteins, as well as a robust synthetic biology platform host, due to its safe status and beneficial traits, including fast growth and thermotolerance. However, the lack of high-efficiency transformation methods hampers the fundamental research and industrial application of this yeast. Protoplast transformation is one of the most commonly used fungal transformation methods, but it yet remains unexplored in K. marxianus. Here, we established the protoplast transformation method of K. marxianus for the first time. A series of parameters on the transformation efficiency were optimized: cells were collected in the late-log phase and treated with zymolyase for protoplasting; the transformation was performed at 0 °C with carrier DNA, CaCl2, and PEG; after transformation, protoplasts were recovered in a solid regeneration medium containing 3–4% agar and 0.8 m sorbitol. By using the optimized method, plasmids of 10, 24, and 58 kb were successfully transformed into K. marxianus. The highest efficiency reached 1.8 × 104 transformants per μg DNA, which is 18-fold higher than the lithium acetate method. This protoplast transformation method will promote the genetic engineering of K. marxianus that requires high-efficiency transformation or the introduction of large DNA fragments.  相似文献   

7.
8.

Background  

In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties.  相似文献   

9.
The fermentation characteristics of the novel, thermotolerant, isolate Kluyveromyces marxianus var marxianus were determined to evaluate its aptitude for use in an ethanol production process. Sustainable growth was not observed under anaerobic conditions, even in the presence of unsaturated fatty acid and sterol. A maximum ethanol concentration of 40 g L−1 was produced at 45°C, with an initial specific ethanol production rate of 1.7 g g−1 h−1. This was observed at ethanol concentrations below 8 g L−1 and under oxygen-limited conditions. The low ethanol tolerance and low growth under oxygen-limited conditions required for ethanol production implied that a simple continuous process was not feasible with this yeast strain. Improved productivity was achieved through recycling biomass into the fermenter, indicating that utilising an effective cell retention method such as cell recycle or immobilisation, could lead to the development of a viable industrial process using this novel yeast strain. Received 14 February 1998/ Accepted in revised form 19 May 1998  相似文献   

10.
Summary Two ethanologenic yeasts, Saccharomyces cerevisiae and Kluyveromyces marxianus, were used to ferment sugar solutions modeling hydrolyzed Valencia orange peel waste at 37°C. Orange stripper oil produced from orange peel was added in various amounts to determine its effect on ethanol production. The minimum peel oil concentration that inhibited ethanol production was determined after 24, 48 and 72 h and the two yeasts were compared to one another in terms of ethanol yield. Minimum inhibitory peel oil concentrations for ethanol production were 0.05% at 24 h, 0.10% at 48 h, and 0.15% at 72 h for both yeasts. S. cerevisiae produced more ethanol than K. marxianus at each time point.  相似文献   

11.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   

12.
Ethanol production by K. marxianus in whey from organic cheese production was examined in batch and continuous mode. The results showed that no pasteurization or freezing of the whey was necessary and that K. marxianus was able to compete with the lactic acid bacteria added during cheese production. The results also showed that, even though some lactic acid fermentation had taken place prior to ethanol fermentation, K. marxianus was able to take over and produce ethanol from the remaining lactose, since a significant amount of lactic acid was not produced (1–2 g/l). Batch fermentations showed high ethanol yield (~0.50 g ethanol/g lactose) at both 30°C and 40°C using low pH (4.5) or no pH control. Continuous fermentation of nonsterilized whey was performed using Ca-alginate-immobilized K. marxianus. High ethanol productivity (2.5–4.5 g/l/h) was achieved at dilution rate of 0.2/h, and it was concluded that K. marxianus is very suitable for industrial ethanol production from whey.  相似文献   

13.
A number of yeast strains, isolated from sugar cane mills and identified as strains of Kluyveromyces marxianus var. marxianus, were examined for their ability to ferment glucose and cane syrup to ethanol at high temperatures. Several strains were capable of rapid fermentation at temperatures up to 47°C. At 43°C, >6% (wt/vol) ethanol was produced after 12 to 14 h of fermentation, concurrent with retention of high cell viability (>80%). Although the type strain (CBS 712) of K. marxianus var. marxianus produced up to 6% (wt/vol) ethanol at 43°C, cell viability was low, 30 to 50%, and the fermentation time was 24 to 30 h. On the basis of currently available strains, we suggest that it may be possible by genetic engineering to construct yeasts capable of fermenting carbohydrates at temperatures close to 50°C to produce 10 to 15% (wt/vol) ethanol in 12 to 18 h with retention of cell viability.  相似文献   

14.
Aims: Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. Methods and Results: A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase‐producing yeast Kluyveromyces marxianus Y179 and fed‐batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch‐based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l?1 was achieved when 0·15 g l?1 K2HPO4 was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. Conclusions: A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Significance and Impact of the Study: Jerusalem artichoke tubers are an alternative to grain‐based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system.  相似文献   

15.
Kluyveromyces marxianus has the capability of producing xylitol from xylose because of the endogenous xylose reductase (KmXYL1) gene. In this study, we cloned KmXYL1 genes and compared amino acid sequences of xylose reductase (XR) from four K. marxianus strains (KCTC 7001, KCTC 7155, KCTC 17212, and KCTC 17555). Four K. marxianus strains showed high homologies (99%) of amino acid sequences with those from other reported K. marxianus strains and around 60% homologies with that from Scheffersomyces stipitis. For XR enzymatic activities, four K. marxianus strains exhibited thermostable XR activities up to 45°C and K. marxianus KCTC 7001 showed the highest XR activity. When reaction temperatures were increased from 30 to 45°C, NADH-dependent XR activity from K. marxianus KCTC 7001 was highly increased (46%). When xylitol fermentations were performed at 30 or 45°C, four K. marxianus strains showed very poor xylitol production capabilities regardless fermentation temperatures. Xylitol productions from four K. marxianus strains might be limited because of low xylose uptake rate or cell growth although they have high thermostable XR activities.  相似文献   

16.
The Kluyveromyces marxianus strains CBS 6556, CBS 397 and CBS 712T were cultivated on a defined medium with either glucose, lactose or sucrose as the sole carbon source, at 30 and 37°C. The aim of this work was to evaluate the diversity within this species, in terms of the macroscopic physiology. The main properties evaluated were: intensity of the Crabtree effect, specific growth rate, biomass yield on substrate, metabolite excretion and protein secretion capacity, inferred by measuring extracellular inulinase activity. The strain Kluyveromyces lactis CBS 2359 was evaluated in parallel, since it is the best described Kluyveromyces yeast and thus can be used as a control for the experimental setup. K. marxianus CBS 6556 presented the highest specific growth rate (0.70 h−1) and the highest specific inulinase activity (1.65 U mg−1 dry cell weight) among all strains investigated, when grown at 37°C with sucrose as the sole carbon source. The lowest metabolite formation and highest biomass yield on substrate (0.59 g dry cell weight g sucrose−1) was achieved by K. marxianus CBS 712T at 37°C. Taken together, the results show a systematic comparison of carbon and energy metabolism among three of the best known K. marxianus strains, in parallel to K. lactis CBS 2359.  相似文献   

17.
Aims: To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. Methods and Results: The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38°C for growth and inulinase production, and 35°C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l?1, and the highest ethanol yield of 0·467, or 91·5% of the theoretical value of 0·511, was achieved for the slurry with a solid concentration of 200 g l?1. Conclusions: Halophilic Jerusalem artichoke can be used for fuel ethanol production. Significance and Impact of the Study: Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.  相似文献   

18.
Phenylethanol alcohol, or 2-phenylethanol (2-PE) production by yeasts has been considered a promising alternative to its chemical synthesis. In order to evaluate the potential of yeast strains isolated from different Brazilian environments, we evaluated the 2-PE production of 267 strains. Among them, the Kluyveromyces marxianus CCT 7735 yeast stood out as being the best 2-PE producer. The K. marxianus CCT 7735 growth was impaired by 2-PE; nevertheless, this effect is less pronounced than the inhibition reported for certain Saccharomyces cerevisiae strains. The maximum 2-PE titer obtained under optimized conditions was 3.44 g/L, 28% higher than the titer achieved under unoptimized conditions. The optimized conditions were: 30ºC, and glucose and L-phe concentrations of 3.0 and 4.0 g/L, respectively. Moreover, the specific production rate of 2-PE increased twofold compared to the unoptimized conditions.  相似文献   

19.
Kluyveromyces marxianus is a promising nonconventional yeast for biobased chemical production due to its rapid growth rate, high TCA cycle flux, and tolerance to low pH and high temperature. Unlike Saccharomyces cerevisiae, K. marxianus grows on low-cost substrates to cell densities that equal or surpass densities in glucose, which can be beneficial for utilization of lignocellulosic biomass (xylose), biofuel production waste (glycerol), and whey (lactose). We have evaluated K. marxianus for the synthesis of polyketides, using triacetic acid lactone (TAL) as the product. The 2-pyrone synthase (2-PS) was expressed on a CEN/ARS plasmid in three different strains, and the effects of temperature, carbon source, and cultivation strategy on TAL levels were determined. The highest titer was obtained in defined 1% xylose medium at 37°C, with substantial titers at 41 and 43°C. The introduction of a high-stability 2-PS mutant and a promoter substitution increased titer four-fold. 2-PS expression from a multi-copy pKD1-based plasmid improved TAL titers a further five-fold. Combining the best plasmid, promoter, and strain resulted in a TAL titer of 1.24 g/L and a yield of 0.0295 mol TAL/mol carbon for this otherwise unengineered strain in 3 ml tube culture. This is an excellent titer and yield (on xylose) before metabolic engineering or fed-batch culture relative to other hosts (on glucose), and demonstrates the promise of this rapidly growing and thermotolerant yeast species for polyketide production.  相似文献   

20.
 The thermotolerant yeast strain, Kluyveromyces marxianus IMB3, was found to be capable of ethanol production during growth at 45°C on media containing milled paper and exogenously added commercial cellulase. At maximum achievable cellulose concentrations in shake-flask cultures, ethanol production increased to 6.6 g/l at 45°C, representing an overall level of conversion of 21% of the maximum theoretical yield. Subsequent studies involving variations in added cellulase concentrations to the batch systems demonstrated that ethanol yields could be increased to 10 g/l at 45°C, which represented 39% of the maximum theoretical yield. As a result of ethanol production at 45°C in the systems examined, we suggest that the thermotolerant ethanol-producing yeast strain K. marxianus represents a novel candidate for use in simultaneous saccharification and conversion of the resulting substrates to ethanol. Received: 9 June 1994/Received revision: 8 August 1994/Accepted: 12 August 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号