首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to selenate and chromate, toxic analogues of sulphate, was used to isolate a mutant of Saccharomyces cerevisiae deficient in the capacity to transport sulphate into the cells. A clone which complements this mutation was isolated from a cDNA library prepared from S. cerevisiae poly(A)+ RNA. This clone contains an insert which is 2775 by in length and has a single open reading frame that encodes a 859 amino acid polypeptide with a molecular mass of 96 kDa. Sequence motifs within the deduced amino acid sequence of this cDNA (SUL1) show homology with conserved areas of sulphate transport proteins from other organisms. Sequence analysis predicts the position of 12 putative membrane spanning domains in SUL1. When the cDNA for SUL1 was expressed in S. cerevisiae, a high affinity sulphate uptake activity (Km = 7.5 ± 0.6 μM for SO 4 2? ) was observed. A genomic mutant of S. cerevisiae in which 1096 by were deleted from the SUL1 coding region was constructed. This mutant was unable to grow on media containing less than 5 mM sulphate unless complemented with a plasmid containing the SUL1 cDNA. We conclude that the SUL1 cDNA encodes a S. cerevisiae high affinity sulphate transporter that is responsible for the transfer of sulphate across the plasma membrane from the external medium.  相似文献   

2.
A cDNA encoding a high-affinity sulphate transporter has been isolated from barley by complementation of a yeast mutant. The cDNA, designated HVST1, encodes a polypeptide of 660 amino acids (Mr = 72 550), which is predicted to have 12 membrane-spanning domains and has extensive sequence homology with other identified eukaryotic sulphate transporters. The Km for sulphate was 6.9 µM when the HVST1 cDNA was expressed in a yeast mutant deficient in the gene encoding for the yeast SUL1 sulphate transporter. The strong pH-dependency of sulphate uptake when HVST1 was expressed heterologously in yeast suggests that the HVST1 polypeptide is a proton/sulphate co-transporter. The gene encoding HVST1 is expressed specifically in root tissues and the abundance of the mRNA is strongly influenced by sulphur nutrition. During sulphur-starvation of barley, the abundance of mRNA corresponding to HVST1, and the capacity of the roots to take up sulphate, both increase. Upon re-supply of sulphate, the abundance of the mRNA corresponding to HVST1, and the capacity of the roots to take up sulphate, decrease rapidly, concomitant with rises in tissue sulphate, cysteine and glutathione contents. Addition of the cysteine precursor, O-acetylserine, to plants grown with adequate sulphur supply, leads to increases in sulphate transporter mRNA, sulphate uptake rates and tissue contents of glutathione and cysteine. It is suggested, that whilst sulphate, cysteine and glutathione may be candidates for negative metabolic regulators of sulphate transporter gene expression, this regulation may be overridden by O-acetylserine acting as a positive regulator.  相似文献   

3.
Sulphate uptake by the unicellular marine red algaRhodella maculata conforms to Michaelis-Menten kinetics. Two uptake systems have been found: a low affinity system with an apparentK m of 22 mM, and a high affinity system with an apparentK m of 63.4 M. Transition from the low to the high affinity system can occur within 2.5 min, in response to a decrease in the ambient sulphate concentration to below 10 mM. Assimilation rates in the dark are about 20% those in the light, although enhancement by light is independent of the quanlity of light supplied above 27 mol m-2 s-1. Use of metabolic inhibitors indicates that photophosphorylation provides the main source of energy for sulphate assimilation, through both cyclic and non-cyclic electron flow.Abbreviations used APS-kinase ATP:adenylyl-sulphate 3-phosphotransferase (E.C. 2.7.1.25) - ATP-sulphurylase ATP:sulphate adenylyltransferase (E.C.2.7.74) - DCMU [3-(3,4-dichlorophenyl)]-1,1 dimethylurea - 2,4 DNP 2,4-dinitrophenol - DBMIB Dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone)  相似文献   

4.
Summary Ryegrass was grown in sand containing35S-labelled sulphate adsorbed onto the surface of Al-hydrous oxide. S from this source was available to ryegrass even at very low surface coverage; and maximum yield of ryegrass occurred at an equilibrium solution concentration of 2 M S corresponding to about 10% coverage on the hydrous oxide.  相似文献   

5.
The yeast Saccharomyces cerevisiae ste6 mutant is defective in transport of a-mating factor, resulting in an inability of ste6 a cells to mate with α cells. The gene encodes an ATP-binding cassette, ABC transporter. We used functional complementation of a yeast ste6 mutant with an Arabidopsis thaliana expression library in an attempt to clone an Arabidopsis homolog. Sequence analysis of the isolated Arabidopsis complementing cDNA however showed no homology to the STE6 gene. High sequence similarity was detected to members of the mitogen-activated serine/threonine protein (MAP) kinase family involved in signal transduction: STE20, STE11, BCK1, Byr2 and p65PAK. The Arabidopsis clone failed to complement a fus3/kss1 mutant of S. cerevisiae, but did complement a defect in ste11, ste20, as well as ste6. The isolated clone encodes a protein that is truncated at its amino-terminal, and might function in a similar way as a dominant STE11 truncation allele. These results suggest that the Arabidopsis cDNA encodes a putative serine/threonine kinase that can function in the mating response pathway upstream of FUS3/KSS1 in S. cerevisiae, at the level of STE11 gene. Interestingly, this clone is able to restore the ability of the ste6 yeast mutant to export a-factor.  相似文献   

6.
Summary The gene encoding the efficient UGA suppressor sup3-e of Schizosaccharomyces pombe was isolated by in vivo transformation of Saccharomyces cerevisiae UGA mutants with S. pombe sup3-e DNA. DNA from a clone bank of EcoRI fragments from a S. pombe sup3-e strain in the hybrid yeast vector YRp17 was used to transform the S. cerevisiae multiple auxotroph his4-260 leu2-2 trp1-1 to prototrophy. Transformants were isolated at a low frequency; they lost the ability to grow in minimal medium after passaging in non-selective media. This suggested the presence of the suppressor gene on the non-integrative plasmid. Plasmid DNA, isolated from the transformed S. cerevisiae cells and subsequently amplified in E. coli, transformed S. cerevisiae his4-260 leu2-2 trp1-1 to prototrophy. In this way a 2.4 kb S. pombe DNA fragment carrying the sup3-e gene was isolated. Sequence analysis revealed the presence of two tRNA coding regions separated by a spacer of only seven nucleotides. The sup3-e tRNA Ser UGA tRNA gene is followed by a sequence coding for the initiator tRNAMet. The transformation results demonstrate that the cloned S. pombe UGA suppressor is active in S. cerevisiae UGA mutant strains.  相似文献   

7.
Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 M, whereas the IC50 value was 15 M for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly Ser) in the subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.  相似文献   

8.
9.
A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library prepared from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 M [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.  相似文献   

10.
pBNiR1, a cDNA clone encoding part of the barley nitrite reductase apoprotein, was isolated from a barley (cv. Maris Mink) leaf cDNA library using the 1.85 kb insert of the maize nitrite reductase cDNA clone pCIB808 as a heterologous probe. The cDNA insert of pBNiR1 is 503 by in length. The nucleotide coding sequence could be aligned with the 3 end of other higher plant nitrite reductase apoprotein cDNA sequences but diverges in the 3 untranslated region. The whole-plant barley mutant STA3999, previously isolated from the cultivar Tweed, accumulates nitrite after nitrate treatment in the light, has very much lowered levels of nitrite reductase activity and lacks detectable nitrite reductase cross-reacting material due to a recessive mutation in a single nuclear gene which we have designated Nir1. STA3999 has the characteristics expected of a nitrite reductase apoprotein gene mutant. Here we have used pB-NiR1 in RFLP analysis to determine whether the mutation carried by STA3999 is linked to the nitrite reductase apoprotein gene locus Nii. An RFLP was identified between the wild-type barley cultivars Tweed (major hybridising band of 11.5 kb) and Golden Promise (major hybridising band of 7.5 kb) when DraI-digested DNA was probed with the insert from the partial barley nitrite reductase cDNA clone, pBNiR1. DraI-digested DNA from the mutant STA3999 also exhibited a major hybridising band of 11.5 kb after hybridisation with the insert from pBNiR1. F1 progeny derived from the cross between the cultivar Golden Promise and the homozygous nir1 mutant STA3999 were heterozygous for these bands as anticipated. Co-segregation of the Tweed RFLP band of 11.5 kb and the mutant phenotype (leaf nitrite accumulation after nitrate treatment/loss of detectable nitrite reductase cross-reacting material at Mr 63000) was scored in an F2 population of 312 plants derived from the cross between the cultivar Golden Promise and the homozygous mutant STA3999. The Tweed RFLP band of 11.5 kb and the mutant phenotype showed strict co-segregation (in approximately one quarter (84) of the 312 F2 plants examined). Only those F2 individuals heterozygous for the RFLP pattern gave rise to F3 progeny which segregated for the mutant phenotype. We conclude that the nir1locus and the nitrite reductase apoprotein gene Nii are very tightly linked.  相似文献   

11.
12.
We have previously isolated a phosphate starvation-response (psr) cDNA clone, psr3.1, from Brassica nigra which encodes a -glucosidase. Southern blots of Arabidopsis thaliana genomic DNA probed with the psr3.1 cDNA indicated that this gene exists as a single locus. A genomic library of A. thaliana was screened at high stringency to isolate the corresponding genomic clone. The resultant clone was coined psr3.2 because of its sequence divergence from isolated psr3.1 cDNA clones. Northern blotting with probes derived from the coding region of the genomic clone showed that this gene is expressed at high levels in Pi-starved roots and the enhancement occurred within two days of growth in medium lacking Pi. The expression of this gene is repressed by heat shock and anaerobic conditions, and it is not significantly induced by high salinity, or by nitrogen or sulfur deprivation. Sequence analysis of the genomic clone revealed the existence of 13 exons interrupted by 12 AT-rich introns and it possessed a high homology with the B. nigra psr3.1 as well as various other -glucosidase genes from other species. Sequence similarity and divergence percentages between the deduced amino acid sequences of the psr3 clones and other -glycosidases suggests that they should be included along with two other Brassicaceae genes in a distinct subfamily of the BGA glycosidase gene family. The presence of an endoplasmic reticulum retention signal at the carboxy terminus indicates the likely cellular location of PSR3.2. The possible metabolic and regulatory roles of this enzyme during the Pi-starvation response are discussed.  相似文献   

13.
Sulfur plays an important role in plants, being used for the biosynthesis of amino acids, sulfolipids and secondary metabolites. After uptake sulfate is activated and subsequently reduced to sulfide or serves as donor for sulfurylation reactions. The first step in the activation of sulfate in all cases studied so far is catalyzed by the enzyme ATP-sulfurylase (E.C. 2.7.7.4.) which catalyzes the formation of adenosine-5′-phosphosulfate (APS). Two cDNA clones from potato encoding ATP-sulfurylases were identified following transformation of a Saccharomyces cerevisiae mutant deficient in ATP-sulfurylase activity with a cDNA library from potato source leaf poly(A)+ RNA cloned in a yeast expression vector. Several transformants were able to grow on a medium with sulfate as the only sulfur source, this ability being strictly linked to the presence of two classes of cDNAs. The clones StMet3-1 and StMet3-2 were further analyzed. DNA analysis revealed an open reading frame encoding a protein with a molecular mass of 48 kDa in the case of StMet3-1 and 52 kDa for StMet3-2. The deduced polypeptides are 88% identical at the amino acid level. The clone StMet3-2 has a 48 amino acid N-terminal extension which shows common features of a chloroplast transit peptide. Sequence comparison of the ATP-sulfurylase Met3 from Saccharomyces cerevisiae with the cDNA StMet3-1 (StMet3-2) reveals 31% (30%) identity at the amino acid level. Protein extracts from the yeast mutant transformed with the clone StMet3-1 displayed ATP-sulfurylase activity. RNA blot analysis demonstrated the expression of both genes in potato leaves, root and stem, but not in tubers. To the best of the authors' knowledge this is the first cloning and identification of genes involved in the reductive sulfate assimilation pathway from higher plants.  相似文献   

14.
A full-length (LeHT2) and two partial (LeHT1 and LeHT3) cDNA clones, encoding hexose transporters, were isolated from tomato (Lycopersicon esculentum) fruit and flower cDNA libraries. Southern blot analysis confirmed the presence of a gene family of hexose transporters in tomato consisting of at least three members. The full-length cDNA (LeHT2) encodes a protein of 523 amino acids, with a calculated molecular mass of 57.6 kDa. The predicted protein has 12 putative membrane-spanning domains and belongs to the Major Facilitator Superfamily of membrane carriers. The three clones encode polypeptides that are homologous to other plant monosaccharide transporters and contain conserved amino acid motifs characteristic of this superfamily. Expression of the three genes in different organs of tomato was investigated by quantitative PCR. LeHT1 and LeHT3 are expressed predominantly in sink tissues, with both genes showing highest expression in young fruit and root tips. LeHT2 is expressed at relatively high levels in source leaves and certain sink tissues such as flowers. LeHT2 was functionally expressed in a hexose transport-deficient mutant (RE700A) of Saccharomyces cerevisiae. LeHT2-dependent transport of glucose in RE700A exhibited properties consistent with the operation of an energy-coupled transporter and probably a H+/hexose symporter. The K m of the symporter for glucose is 45 M.  相似文献   

15.
As a means to study the function of plasma membrane proteins during cold acclimation, we have isolated a cDNA clone for wpi6 which encodes a putative plasma membrane protein from cold-acclimated winter wheat. The wpi6 gene encodes a putative 5.9 kDa polypeptide with two predicted membrane-spanning domains, the sequence of which shows high sequence similarity with BLT101-family proteins from plants and yeast. Strong induction of wpi6 mRNA was observed during an early stage of cold acclimation in root and shoot tissues of both winter and spring wheat cultivars. In contrast to blt101 in barley, wpi6 mRNA was also induced by drought and salinity stresses, and exogenous application of ABA. Expression of wpi6 in a Δpmp3 mutant of Saccharomyces cerevisiae, which is disturbed in plasma membrane potential due to the lack of a BLT101-family protein, partially complemented NaCl sensitivity of the mutant. Transient expression analysis of a WPI6::GFP fusion protein in onion epidermal cells revealed that WPI6 is localized in the plasma membrane. Taken together, these data suggested that WPI6 may have a protective role in maintaining plasma membrane function during cold acclimation in wheat. The nucleotide sequence data for wpi6 have been recorded in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers AB030210 (cDNA) and AB221353 (genomic DNA).  相似文献   

16.
We have cloned an Arabidopsis thaliana cDNA encoding serine acetyltransferase (EC 2.3.1.30) by functional complementation of the Escherichia coli cysE mutant JM15. The cDNA clone Sat-1 conferred serine acetyltransferase activity (with apparent K m for the two substrates acetyl CoA and L-serine of 0.043 and 3.47 mmol/dm3 respectively) on the cysE mutant. The 1515 bp full-length cDNA encodes a deduced protein of 391 amino acids which includes a putative chloroplastic targeting presequence. Northern analysis revealed a single message of 1.5 kb, while Southern hybridisation suggests a small multigene family of related sequences.  相似文献   

17.
We have successfully expressed enzymatically active plant topoisomerase II in Escherichia coli for the first time, which has enabled its biochemical characterization. Using a PCR-based strategy, we obtained a full-length cDNA and the corresponding genomic clone of tobacco topoisomerase II. The genomic clone has 18 exons interrupted by 17 introns. Most of the 5 and 3 splice junctions follow the typical canonical consensus dinucleotide sequence GU-AG present in other plant introns. The position of introns and phasing with respect to primary amino acid sequence in tobacco TopII and Arabidopsis TopII are highly conserved, suggesting that the two genes are evolved from the common ancestral type II topoisomerase gene. The cDNA encodes a polypeptide of 1482 amino acids. The primary amino acid sequence shows a striking sequence similarity, preserving all the structural domains that are conserved among eukaryotic type II topoisomerases in an identical spatial order. We have expressed the full-length polypeptide in E. coli and purified the recombinant protein to homogeneity. The full-length polypeptide relaxed supercoiled DNA and decatenated the catenated DNA in a Mg2+- and ATP-dependent manner, and this activity was inhibited by 4-(9-acridinylamino)-3-methoxymethanesulfonanilide (m-AMSA). The immunofluorescence and confocal microscopic studies, with antibodies developed against the N-terminal region of tobacco recombinant topoisomerase II, established the nuclear localization of topoisomerase II in tobacco BY2 cells. The regulated expression of tobacco topoisomerase II gene under the GAL1 promoter functionally complemented a temperature-sensitive TopII ts yeast mutant.  相似文献   

18.
Summary A mutant of the yeast Saccharomyces cerevisiae has been isolated that is resistant to narciclasine, an inhibitor of peptide bond formation on 80S ribsomes. The mutant shows cross-resistance to a number of inhibitors of peptidyl transferase including anthelmycin, a 4-aminohexosyl cytosine antibiotic, which does not compete with narciclasine for its ribosomal binding site. The mutation is within the gene tcm1 or a closely linked gene on chromosome XV; it is expressed in the 60S ribosomal subunit. The parameters of the binding of (3H)narciclasine to ribosomes and ribosomal subunits from both wild-type and mutant strains have been calculated by ultracentrifugation. One molecule of narciclasine is bound per ribosome or per 60S ribosomal subunit, the values of the dissociation constants being 0.054 and 0.13 m respectively, for 80S and 60S particles from the wild-type cells. Ribosomes of the mutant strain have a lower affinity for narciclasine and trichodermin than ribosomes from wild-type cells. The mutation is semidominant in heterozygous diploid cells.  相似文献   

19.
Two cDNA clones representing mRNAs, highly expressed in pea root tips, were isolated by mRNA differential display. Ribonuclease protection analyses showed different patterns of expression of these two messages in several pea tissues. Sequence analysis showed that the first clone, PsH1b-40, has 100% homology with a previously isolated H1 histone cDNA, PsH1b. However, it has an additional 30 nt at the 3 end which is absent in PsH1b, suggesting possible multiple polyadenylation sites in the same mRNA. The second clone, PsH1b-41, encodes a deduced 19.5 kDa protein of 185 amino acids with an isoelectric point of 11.5. The putative globular domain of the encoded protein showed 67–71% residue identity with globular domains of 28 kDa pea PsH1b H1 histone and Arabidopsis thaliana H1-1 H1 histone. It has 9 repeating motifs of (T/S)XXK. In the C-terminal domain, there are four lysine-rich repeating motifs of SXK(T/S)PXKKXK which may be involved in chromatin condensation and decondensation. Southern blot analysis of nuclear DNA shows that PsH1-41 belongs to a multigene family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号