首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   

2.
The effects of 12-O-tetradecanoylphorbol 13-acetate (TPA), a potent activator of protein kinase C, on high-affinity Na(+)-dependent glutamate transport were investigated in primary cultures of neurons and glial cells from rat brain cortex. Incubation of glial cells with TPA led to concentration- and time-dependent increases in the glutamate transport that could be completely suppressed by the addition of the protein kinase C (PKC) inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine. The TPA effects could be mimicked by oleoylacetylglycerol and by the diacylglycerol kinase inhibitor R59022. The effects of TPA were potentiated by the Ca2+ ionophore A23187. Under the chosen experimental conditions TPA had no effect on glutamate transport in neurons. We conclude that PKC activates the sodium-dependent high-affinity glutamate transport in glial cells and that it has dissimilar effects on neurons and glial cells.  相似文献   

3.
The glial GLAST and GLT-1 glutamate transporters are transiently expressed in hippocampal neurons as shown by immunocytochemistry (Plachez et al., 2000. J. Neurosci. Res., 59, 587-593). In order to test if this transient expression is associated to a transient glutamate uptake activity, [3H]-glutamate uptake was studied during the in vitro development of embryonic hippocampal neurons cultured in a defined (serum free) medium. In these cultures, the ratio of the number of glial cells to the number of neurons increased from 1.7 to 11.3% during the first 10 days of culture, while 77% of the neurons died. The number of neurons then remains stable up to 23 days of culture. The initial glutamate uptake velocity at 20 and 200 microM [3H]-glutamate usually increased about five times between 1 and 10 days in vitro (DIV). Interestingly, at 2 microM [3H]-glutamate, the uptake initial velocity showed a biphasic pattern, with a transient peak between 1 and 6 DIV, the maximum being reached at 2 DIV and a delayed regular increase from 8 to 23 DIV. The concentration-dependent curves were best fitted with two saturable sites high and low affinities, at both 2 and 10 DIV. To pharmacologically characterize the transient increased glutamate uptake activity, four uptake inhibitors, L-threo-3-hydroxy-aspartic acid (THA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC), dihydrokainate (DHK), and DL-threo-beta-benzyloxyaspartate (TBOA) were tested. THA, L-trans-2,4-PDC and DL-TBOA inhibited glutamate uptake both at 2 and 10 DIV, while the GLT-1 selective uptake inhibitor DHK neither strongly affected the uptake at 2, nor at 10 DIV. These data indicated that, besides the regular increase in the glial-dependent glutamate uptake activity, a transient high-affinity, DHK insensitive, glutamate transport activity in hippocampal neurons in culture is present. This latter activity could potentially be related to the transient expression of the glial GLAST transporter in neurons.  相似文献   

4.
Anomalies in glutamate homeostasis may contribute to the pathological processes involved in Alzheimer’s disease (AD). Glutamate released from neurons or glial cells is normally rapidly cleared by glutamate transporters, most of which are expressed at the protein level by glial cells. However, in some patho-physiological situations, expression of glutamate transporters that are normally considered to be glial types, appears to be evoked in populations of distressed neurons. This study analysed the expression of exon-skipping forms of the three predominant excitatory amino acid (glutamate) transporters (EAATs1-3) in brains afflicted with AD. We demonstrate by immunocytochemistry in temporal cortex, the expression of these proteins particularly in limited subsets of neurons, some of which appeared to be dys-morphic. Whilst the neuronal expression of the “glial” glutamate transporters EAAT1 and EAAT2 is frequently considered to represent the abnormal and ectopic expression of such transporters, we suggest this may be a misinterpretation, since neurons such as cortical pyramidal cells normally express abundant mRNA for these EAATs (but little if any EAAT protein expression). We hypothesize instead that distressed neurons in the AD brain can turn on the translation of pre-existent mRNA pools, or suppress the degradation of alternately spliced glutamate transporter protein, leading to the “unmasking” of, rather than evoked expression of “glial” glutamate transporters in stressed neurons. Special issue article in honor of Dr. Graham Johnston.  相似文献   

5.
Neuron-rich and glial nuclear preparations and liver nuclei were isolated from adult guinea pigs. These nuclei were incubated to carry out DNA-ligation and -synthesis reactions. Before and after incubation, the sizes of single-standed DNA and DNA-synthesis patterns in single strands were analysed by using alkaline sucrose-density-gradient centrifugation. Isolation of nuclei by cell-fractionation technique shortened chromatin DNA and decreased markedly the number-average molecular weight of DNA strands. Chromatin DNA in neuronal and glial nuclei was ligated at the nicks during incubation in a reaction mixture containing ATP, Mg(2+), dithiothreitol and four deoxyribonucleotides. The number-average molecular weights were estimated to increase 1.1-and 2.1-fold in neuronal and glial nuclei respectively. DNA strands in liver nuclei were shortened during incubation, but elongated under conditions that inhibit deoxyribonuclease. Since the endogenous deoxyribounuclease activity was conspicuously higher in liver nuclei than in neuronal and glial nuclei, the shortening and elongation were thought to depend on the balance between DNA ligase and deoxyribonuclease reactions. DNA synthesis occurred at the gaps in chromatin DNA and about 50% of the total synthesized DNA was found in the shorter strands having 6 to 297 bases in all species of nuclei. Based on these results, it was concluded that in nuclei isolated from non-dividing cells (neurons) and slowly dividing cells (glial and liver cells) DNA-ligation and -synthesis reactions proceeded in parallel at the breaks in single-stranded DNA, which was produced mainly by endogenous deoxyribonuclease during isolation and incubation processes.  相似文献   

6.
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.  相似文献   

7.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

8.
Glial strategy for metabolic shuttling and neuronal function   总被引:1,自引:0,他引:1  
Glial cells serve a variety of functions in nervous systems, some of which are activated by neurotransmitters released from neurons. Glial cells respond to these neurotransmitters via receptors, but also take up some of the transmitters to help terminate the synaptic process. Among these, glutamate uptake by glial cells is pivotal to avoid transmitter-mediated excitotoxicity. Here, a new model is proposed in which glutamate uptake via the excitatory amino acid transporter (EAAT) is functionally coupled to other glial transporters, in particular the sodium-bicarbonate cotransporter (NBC) and the monocarboxylate transporter (MCT), as well as other glial functions, such as calcium signalling, a high potassium conductance and CO(2) consumption. The central issue of this hypothesis is that the shuttling of sodium ions and acid/base equivalents, which drive the metabolite transport across the glial membrane, co-operate with each other, and hence save energy. As a result, glutamate removal from synaptic domains and lactate secretion serving the energy supply to neurons would be facilitated and could operate with greater capacity.  相似文献   

9.
We review briefly 13C NMR studies of cerebral glucose metabolism with an emphasis on the roles of glial energetics and the glutamine cycle. Mathematical modeling analysis of in vivo 13C turnover experiments from the C4 carbons of glutamate and glutamine are consistent with: (i) the glutamine cycle being the major cerebral metabolic route supporting glutamatergic neurotransmission, (ii) glial glutamine synthesis being stoichiometrically coupled to glycolytic ATP production, (iii) glutamine serving as the main precursor of neurotransmitter glutamate and (iv) glutamatergic neurotransmission being supported by lactate oxidation in the neurons in a process accounting for 60-80% of the energy derived from glucose catabolism. However, more recent experimental approaches using inhibitors of the glial tricarboxylic acid (TCA) cycle (trifluoroacetic acid, TFA) or of glutamine synthase (methionine sulfoximine, MSO) reveal that a considerable portion of the energy required to support glutamine synthesis is derived from the oxidative metabolism of glucose in the astroglia and that a significant amount of the neurotransmitter glutamate is produced from neuronal glucose or lactate rather than from glial glutamine. Moreover, a redox switch has been proposed that allows the neurons to use either glucose or lactate as substrates for oxidation, depending on the relative availability of these fuels under resting or activation conditions, respectively. Together, these results suggest that the coupling mechanisms between neuronal and glial metabolism are more complex than initially envisioned.  相似文献   

10.
Scott NA  Murphy TH 《PloS one》2012,7(1):e29859
Maintenance of neuronal function depends on the delivery of oxygen and glucose through changes in blood flow that are linked to the level of ongoing neuronal and glial activity, yet the underlying mechanisms remain unclear. Using transgenic mice expressing the light-activated cation channel channelrhodopsin-2 in deep layer pyramidal neurons, we report that changes in intrinsic optical signals and blood flow can be evoked by activation of a subset of channelrhodopsin-2-expressing neurons in the sensorimotor cortex. We have combined imaging and pharmacology to examine the importance of glutamatergic synaptic transmission in this form of neurovascular coupling. Blockade of ionotropic glutamate receptors with the antagonists CNQX and MK801 significantly reduced forepaw-evoked hemodynamic responses, yet resulted in no significant reduction of channelrhodopsin-evoked hemodynamic responses, suggesting that stimulus-dependent coupling of neuronal activity to blood flow can be independent of local excitatory synaptic transmission. Together, these results indicate that channelrhodopsin-2 activation of sensorimotor excitatory neurons produces changes in intrinsic optical signals and blood flow that can occur under conditions where synaptic activation of neurons or other cells through ionotropic glutamate receptors would be blocked.  相似文献   

11.
The molecular layer of the cerebellar cortex is populated by glial progenitors that express ionotropic glutamate receptors and extend numerous processes among Purkinje cell dendrites. Here, we show that release of glutamate from climbing fiber (CF) axons produces AMPA receptor currents with rapid kinetics in these NG2-immunoreactive glial cells (NG2+ cells) in cerebellar slices. NG2+ cells may receive up to 70 discrete inputs from one CF and, unlike mature Purkinje cells, are often innervated by multiple CFs. Paired Purkinje cell-NG2+ cell recordings show that one CF can innervate both cell types. CF boutons make direct synaptic junctions with NG2+ cell processes, indicating that this rapid neuron-glia signaling occurs at discrete sites rather than through ectopic release at CF-Purkinje cell synapses. This robust activation of Ca2+-permeable AMPA receptors in NG2+ cells expands the influence of the olivocerebellar projection to this abundant class of glial progenitors.  相似文献   

12.
We have investigated two characteristics of the glutamate system in the developing rabbit retina. 1) Glutamate immunoreactivity was observed at birth within developing processes of four cell types; two of which, photoreceptors and ganglion cells, are known to be glutamatergic in the adult. Two other cell types, type A horizontal cells and amacrine cells, are immunoreactive to both glutamate and GABA at birth, suggesting that endogenous pools of glutamate in GABAergic neurons serve as precursor for GABA synthesis. Thus it appears that endogenous glutamate pools are present within neurons prior to synaptogenesis as part of the early expression of either the glutamate or GABA transmitter phenotype. 2) Analysis of3H-glutamate metabolism during retinal development showed that rapid conversion of glutamate to glutamine does not occur until the second postnatal week, coincident with the expression of Muller (glial) cell activity. In the absence of glial metabolism in the neonate, extracellular concentrations of glutamate remain relatively high and are likely to have major effects on neuronal maturation.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

13.
Nitric oxide (NO) contributes to neuronal death in cerebral ischemia and other conditions. Astrocytes are anatomically well positioned to shield neurons from NO because astrocyte processes surround most neurons. In this study, the capacity of astrocytes to limit NO neurotoxicity was examined using a cortical co-culture system. Astrocyte-coated dialysis membranes were placed directly on top of neuronal cultures to provide a removable astrocyte layer between the neurons and the culture medium. The utility of this system was tested by comparing neuronal death produced by glutamate, which is rapidly cleared by astrocytes, and N-methyl-D-aspartate (NMDA), which is not. The presence of an astrocyte layer increased the LD(50) for glutamate by approximately four-fold, but had no effect on NMDA toxicity. Astrocyte effects on neuronal death produced by the NO donors S-nitroso-N-acetyl penicillamine and spermine NONOate were examined by placing these compounds into the medium of co-cultures containing either a control astrocyte layer or an astrocyte layer depleted of glutathione by prior exposure to buthionine sulfoximine. Neurons in culture with the glutathione-depleted astrocytes exhibited a two-fold increase in cell death over a range of NO donor concentrations. These findings suggest that astrocytes protect neurons from NO toxicity by a glutathione-dependent mechanism.  相似文献   

14.
In order to investigate the role of glia in relation to factors that affect the expression of beta-amyloid precursor protein (betaAPP) and B cell lymphoma oncogene protein (Bcl-2) in the central nervous tissue, the patterns of expression of betaAPP and Bcl-2 in developing and mature rat retinas were studied immunocytochemically after intravitreal injection of alpha-aminoadipic acid (alpha-AAA), a glutamate analogue and gliotoxin that is known to cause injury of retinal Müller glial cells. In normal developing retinas, betaAPP and Bcl-2 were expressed primarily but transiently in a small number of neurons in the ganglion cell layer during the first postnatal week. Immunoreactivity of betaAPP and Bcl-2 appeared in the endfeet and proximal part of the radial processes of Müller glial cells from the second postnatal week onwards. In rats that received intravitreal injection of alpha-AAA at birth, there was a loss of immunoreactivity to vimentin, and a delayed expressed on betaAPP or Bcl-2 in Muller glial cells until 3-5 weeks post-injection. Immunoreactive neurons were also observed in the inner retina especially in the ganglion cell layer from 5 to 35 days after injection. A significant reduction in numerical density of cells with large somata in the ganglion cell layer was observed in the neonatally injected retinas at P56, which was accompanied by an increased immunostaining in radial processes of Müller glial cells. In contrast, no detectable changes in the expression of betaAPP and Bcl-2 were observed in retina that received alpha-AAA as adults. These results indicate that the gliotoxin alpha-AAA has long lasting effects on the expression of betaAPP and Bcl-2 in Müller glial cells as well as neurons in the developing but not mature retinas. The loss of vimentin and delayed expression of betaAPP and Bcl-2 in developing Müller glial cells suggests that the metabolic integrity of Müller cells was temporarily compromised, which may have adverse effects on developing neurons that are vulnerable or dependent on trophic support from the Müller glial cells.  相似文献   

15.
Glial fibrillary acidic protein was localized at the electron microscope level in the cerebellum of adult mice by indirect immunoperoxidase histology. In confirmation of previous studies at the light microscope level, the antigen was detectable in astrocytes and their processes, but not in neurons or their processes, or in oligodendroglia. Astrocytic processes were stained in white matter, in the granular layet surrounding synaptic glomerular complexes, and in the molecular layer in the form of radially oriented fibers and of sheaths surrounding Purkinje cell dendrites. Astrocytic endfeet impinging on meninges and perivascular membranes were also antigen positive. In astrocytic perikarya and processes, the immunohistochemical reaction product appears both as a diffuse cytoplasmic label and as elongated strands, which by their distribution and frequency could be considered glial filaments.  相似文献   

16.
Previously, ultrastructural evidence has been presented that, in the retina of adult Tupaia belangeri, the perikarya and processes of horizontal cells extensively ensheath the basal lamina of capillary cross sections located between the inner nuclear layer and the outer plexiform layer. The present study tests whether these horizontal cells can be further characterized by applying a polyclonal antibody against glial fibrillary acidic protein (GFAP). GFAP-immunoreactivity was noted in the astrocytic plexus ensheathing retinofugal axons in the nerve fiber layer. The vitreal endfeet and parts of the trunks of M*uller cells were also labelled. Moreover, a large subpopulation of vessel-contacting horizontal cells was strongly GFAP-immunoreactive. Immunoreactivity was found in the perinuclear cytoplasm and in the sturdy primary dendrites of these cells. The somata of GFAP-immunoreactive horizontal cells were unevenly distributed. These cells had three to seven primary dendrites that showed considerable overlap with the dendrites of neighbouring horizontal cells. For these reasons, GFAP-immunoreactive horizontal cells were classified as belonging to the mammalian type A. Whether the simultaneous occurrence of two glial features, viz. extensive ensheathment of retinal capillaries and immunoreactivity for a polyclonal antibody towards GFAP, supports the view that retinal horizontal cells represent a cell type intermediate between neurons and glial cells is discussed.  相似文献   

17.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

18.
P Mestres  M Diener  W Rummel 《Acta anatomica》1992,143(4):275-282
The ultrastructure of neurons, glial cells and axons of the mucosal plexus of the rat colon descendens was studied. Serial semithin sections and a re-embedding technique were used in order to localize the ganglia. The ganglia are free of blood vessels and connective tissue. The ratio of neurons to glial cells is approximately 1. Ganglia and nerve strands are enclosed by a basement membrane, without a well-defined perineural connective tissue. The neurons show a structure similar to other enteric plexus. Synaptic contacts were observed frequently in the neuropil, where nerve endings and varicosities show a diverse outfit in vesicles. The glial cells, which contain immunocytochemically detectable glial fibrillary protein, possess the same ultrastructural attributes in the intra- and extraganglionic localizations. In the nerves, axonic profiles and varicosities appear in close relation with glial cells or their processes. The distance between the nerves and their target cells, i.e. the enterocytes, is 0.5 microns or more with interposed basement membranes and fibroblasts.  相似文献   

19.
Huntington disease (HD) is characterized by the preferential loss of striatal medium-sized spiny neurons (MSNs) in the brain. Because MSNs receive abundant glutamatergic input, their vulnerability to excitotoxicity may be largely influenced by the capacity of glial cells to remove extracellular glutamate. However, little is known about the role of glia in HD neuropathology. Here, we report that mutant huntingtin accumulates in glial nuclei in HD brains and decreases the expression of glutamate transporters. As a result, mutant huntingtin (htt) reduces glutamate uptake in cultured astrocytes and HD mouse brains. In a neuron-glia coculture system, wild-type glial cells protected neurons against mutant htt-mediated neurotoxicity, whereas glial cells expressing mutant htt increased neuronal vulnerability. Mutant htt in cultured astrocytes decreased their protection of neurons against glutamate excitotoxicity. These findings suggest that decreased glutamate uptake caused by glial mutant htt may critically contribute to neuronal excitotoxicity in HD.  相似文献   

20.
Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons associated with them and resembled Bergmann glia. The second had a slightly larger cell body with markedly shorter arms among which were nestled several dozen neuronal cells, and resembled astrocytes of the granular layer. Staining with monoclonal antisera raised against purified galactocerebroside revealed the presence of immature oligodendroglia in the cultures. These glial cells constituted approximately 2% of the total cell population in the cultures and, in contrast to astroglia, did not form specific contacts with neurons. Staining with two neuronal markers, antisera raised against purified NILE glycoprotein and tetanus toxin, revealed that most cells associated with presumed astroglia were small neurons (5-8 microns). After 1-2 d in culture, some stained neurons had very fine, short processes. Nearly all of the processes greater than 10-20 micron long were glial in origin. Electron microscopy also demonstrated the presence of two forms of astroglia in the cultures, each with a different organizing influence on cerebellar neurons. Most neurons associated with astroglia were granule neurons, although a few larger neurons sometimes associated with them. Time-lapse video microscopy revealed extensive cell migration (approximately 10 microns/h) along the arms of Bergmann-like astroglia. In contrast, cells did not migrate along the arms of astrocyte-like astroglia, but remained stationary at or near branch points. Growth cone activity, pulsating movements of cell perikarya, and ruffling of the membranes of glial and neuronal processes were also seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号