首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2D QSAR studies were carried out for a series of 55 ligands for the Thyroid receptors, TRalpha and TRbeta. Significant cross-validated correlation coefficients (q(2)=0.781 (TRalpha) and 0.693 (TRbeta)) were obtained. The models' predictive abilities were proved more valuable than the classical 2D-QSAR, and were further investigated by means of an external test set of 13 compounds. The predicted values are in good agreement with experimental values, suggesting that the models could be useful in the design of novel, more potent TR ligands. Contribution map analysis identified a number of positions that are promising for the development of receptor isoform specific ligands.  相似文献   

2.
Based on the examination of the X-ray crystallographic structures of the LBD of TRalpha and TRbeta in complex with KB-141 (2), a number of novel 4'-hydroxy bioisosteric thyromimetics were prepared. Optimal affinity and beta-selectivity (33 times), was found with a medium-sized alkyl-substituted amido group; iso-butyl (12c). It can be concluded that bioisosteric replacements of the 4'-hydroxy position represent a new promising class of TRbeta-selective synthetic thyromimetics.  相似文献   

3.
T3 potently influences cholesterol metabolism through the nuclear thyroid hormone receptor beta (TRbeta), the most abundant TR isoform in rodent liver. Here, we have tested if TRalpha1, when expressed at increased levels from its normal locus, can replace TRbeta in regulation of cholesterol metabolism. By the use of TRalpha2-/-beta-/- animals that overexpress hepatic TRalpha1 6-fold, a near normalization of the total amount of T3 binding receptors was achieved. These mice are similar to TRbeta-/- and TRalpha1-/-beta-/- mice in that they fail to regulate cholesterol 7alpha-hydroxylase expression properly, and that their serum cholesterol levels are unaffected by T3. Thus, hepatic overexpression of TRalpha1 cannot substitute for absence of TRbeta, suggesting that the TRbeta gene has a unique role in T3 regulation of cholesterol metabolism in mice. However, examination of T3 regulation of hepatic target genes revealed that dependence on TRbeta is not general: T3 regulation of type I iodothyronine deiodinase and the low density lipoprotein receptor were partially rescued by TRalpha1 overexpression. These in vivo data show that TRbeta is necessary for the effects of T3 on cholesterol metabolism. That TRalpha1 only in some instances can substitute for TRbeta indicates that T3 regulation of physiological and molecular processes in the liver occurs in an isoform-specific fashion.  相似文献   

4.
Nuclear thyroid hormone (TH) receptors (TR) play a critical role in mediating the diverse actions of TH in development, differentiation, and metabolism of most tissues, but the role of TR isoforms in muscle development and function is unclear. Therefore, we have undertaken a comprehensive expression analysis of TRalpha 1, TRbeta 1, TRbeta 2 (TH binding), and TRalpha 2 (non-TH binding) in functionally distinct porcine muscles during prenatal and postnatal development. Use of a novel and highly sensitive RNase protection assay revealed striking muscle-specific developmental profiles of all four TR isoform mRNAs in cardiac, longissimus, soleus, rhomboideus, and diaphragm. Distribution of TR isoforms varied markedly between muscles; TRalpha expression was considerably greater than TRbeta and there were significant differences in the ratios TRalpha 1:TRalpha 2, and TRbeta 1:TRbeta 2. Together with immunohistochemistry of myosin heavy chain isoforms and data on myogenesis and maturation of the TH axis, these findings provide new evidence that highlights central roles for 1) TRalpha isoforms in fetal myogenesis, 2) the ratio TRalpha 1:TRalpha 2 in determining cardiac and skeletal muscle phenotype and function; 3) TRbeta in maintaining a basal level of cellular response to TH throughout development and a specific maturational function around birth. These findings suggest that events disrupting normal developmental profiles of TR isoforms may impair optimal function of cardiac and skeletal muscles.  相似文献   

5.
6.
7.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

8.
Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.  相似文献   

9.
10.
11.
12.
13.
We investigated the effect of thyroid hormone (TH) receptor (TR)alpha and -beta isoforms in TH action in the heart. Noninvasive echocardiographic measurements were made in mice homozygous for disruption of TRalpha (TRalpha(0/0)) or TRbeta (TRbeta(-/-)). Mice were studied at baseline, 4 wk after TH deprivation (using a low-iodine diet containing propylthiouracil), and after 4-wk treatment with TH. Baseline heart rates (HR) were similar in wild-type (WT) and TRalpha(0/0) mice but were greater in TRbeta(-/-) mice. With TH deprivation, HR decreased 49% in WT and 37% in TRbeta(-/-) mice and decreased only 5% in TRalpha(0/0) mice from baseline, whereas HR increased in all genotypes with TH treatment. Cardiac output (CO) and cardiac index (CI) in WT mice decreased (-31 and -32%, respectively) with TH deprivation and increased (+69 and +35%, respectively) with TH treatment. The effects of CO and CI were blunted with TH withdrawal in both TRalpha(0/0) (+8 and -2%, respectively) and TRbeta(-/-) mice (-17 and -18%, respectively). Treatment with TH resulted in a 64% increase in LV mass in WT and a 44% increase in TRalpha(0/0) mice but only a 6% increase in TRbeta(-/-) mice (ANOVA P < 0.05). Taken together, these data suggest that TRalpha and TRbeta play different roles in the physiology of TH action on the heart.  相似文献   

14.
15.
16.
17.
Molecular conjugates of hormone receptor-ligands with molecular probes or functional domains are finding diverse applications in chemical biology. Whereas many examples of hormone conjugates that target steroid hormone receptors have been reported, practical ligand conjugates that target the nuclear thyroid hormone receptor (TRbeta) are lacking. TR-targeting conjugate scaffolds based on the ligands GC-1 and NH-2 and the natural ligand triiodothyronine (T3) were synthesized and evaluated in vitro and in cellular assays. Whereas the T3 or GC-1 based conjugates did not bind TRbeta with high affinity, the NH-2 inspired fluorescein-conjugate JZ01 showed low nanomolar affinity for TRbeta and could be used as a nonradiometric probe for ligand binding. A related analogue JZ07 was a potent TR antagonist that is 13-fold selective for TRbeta over TRalpha. JZ01 localizes in the nuclei of TRbeta expressing cells and may serve as a prototype for other TR-targeting conjugates.  相似文献   

18.
The biological activities of thyroid hormones are thought to be mediated by receptors generated by the TRalpha and TRbeta loci. The existence of several receptor isoforms suggests that different functions are mediated by specific isoforms and raises the possibility of functional redundancies. We have inactivated both TRalpha and TRbeta genes by homologous recombination in the mouse and compared the phenotypes of wild-type, and single and double mutant mice. We show by this method that the TRbeta receptors are the most potent regulators of the production of thyroid stimulating hormone (TSH). However, in the absence of TRbeta, the products of the TRalpha gene can fulfill this function as, in the absence of any receptors, TSH and thyroid hormone concentrations reach very high levels. We also show that TRbeta, in contrast to TRalpha, is dispensable for the normal development of bone and intestine. In bone, the disruption of both TRalpha and TRbeta genes does not modify the maturation delay observed in TRalpha -/- mice. In the ileum, the absence of any receptor results in a much more severe impairment than that observed in TRalpha -/- animals. We conclude that each of the two families of proteins mediate specific functions of triiodothyronin (T3), and that redundancy is only partial and concerns a limited number of functions.  相似文献   

19.
Iwamuro S  Yamada M  Kato M  Kikuyama S 《Life sciences》2006,79(23):2165-2171
We investigated effects of different concentrations (10(-7) - 10(-5) M) of bisphenol A (BPA), which is known as an estrogenic and anti-thyroid hormonal endocrine disrupter, on the expression of thyroid hormone receptor (TR) alpha and beta and retinoid X receptor (RXR) gamma mRNA in tails of stage 52-54 Xenopus tadpoles in organ culture in the presence or absence of different concentrations of triiodo-thyronine (T(3)). In the absence of T(3), BPA at any concentration examined did not show remarkable effects on tail length but blocked 10(-7) M T(3)-induced tail resorption in a concentration-dependent manner. Semi-quantitative analyses of TRalpha and TRbeta mRNAs by RT-PCR in the tail specimens indicated that BPA shows an apparent antagonistic effect towards the receptors and reduced their mRNA levels relative to controls. When administered together with 10(-7) M T(3), the antagonistic effects of BPA were detected more clearly and dose-dependently. While BPA prevented the autoinduction of both TRalpha and TRbeta genes by T(3), the effect was less marked on TRalpha than on TRbeta. BPA also moderately suppressed RXRgamma gene expression. Gene expression of RXRgamma, a partner for heterodimer formation of TRs, was supressed by T(3) alone and also by BPA alone, but no additive effects were observed so far as studied. The present study indicates that a relatively low concentration of BPA, 10(-7) M, as compared with those examined previously (10(-5) to 10(-4) M) by us and other investigators, acts as an antagonist of T(3) through suppression of TRalpha and TRbeta gene expression in Xenopus tail in culture.  相似文献   

20.
Abnormal thyroid function is usually associated with altered cardiac function. Mutations in the thyroid hormone (TH)-binding region of the TH beta-receptor (TRbeta) that eliminate its TH-binding ability lead to the thyroid hormone resistance syndrome (RTH) in humans, which is characterized by high blood TH levels, goiter, hyperactivity, and tachycardia. Mice with "knock-in" mutations in the TH alpha-receptor (TRalpha) or TRbeta that remove their TH-binding ability have been developed, and those with the mutated TRbeta (TRbeta(PV/PV)) appear to provide a model for RTH. These two types of mutants show different effects on cerebral energy metabolism, e.g., negligible change in glucose utilization (CMR(Glc)) in TRbeta(PV/PV) mice and markedly reduced CMR(Glc), like that found in cretinous rats, in the mice (TRalpha(PV/+)) with the knock-in mutation of the TRalpha gene. Studies in knockout mice have indicated that the TRalpha may also influence heart rate. Because mutations in both receptor genes appear to affect some parameters of cardiac function and because cardiac functional activity and energy metabolism are linked, we measured heart glucose utilization (HMR(Glc)) in both the TRbeta(PV/PV) and TRalpha(PV/+) mutants. Compared with values in normal wild-type mice, HMR(Glc) was reduced (-77 to -95%) in TRalpha(PV/+) mutants and increased (87 to 340%) in TRbeta(PV/PV) mutants, the degree depending on the region of the heart. Thus the TRalpha(PV/+) and TRbeta(PV/PV) mutations lead, respectively, to opposite effects on energy metabolism in the heart that are consistent with the bradycardia seen in hypothyroidism and the tachycardia associated with hyperthyroidism and RTH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号