首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proline-rich antimicrobial peptide dimer, A3-APO, was designed based on a statistical analysis of native antibacterial peptide and protein sequences. Analysis of a series of structural analogs failed to identify any single or multiple amino acid modification or architectural changes that would significantly improve its potential as a clinical therapeutic. However, a single chain Chex1-Arg20 version, a natural in vivo metabolite, showed a 2 to 8-fold increase in activity against test Enterobacteriaceae strains. In addition to bacterial species close to Escherichia coli in phylogeny, A3-APO analogs were able to effectively kill Pseudomonas aeruginosa and Staphylococcus saprophyticus. Antibacterial efficacy analysis together with biochemical experiments provided further evidence for a multiple mode of action of A3-APO that includes binding and inhibition of the bacterial heat shock protein DnaK. Through inactivating of resistance enzymes, A3-APO was able to recover the lost activity of conventional antibiotics including chloramphenicol, beta-lactams, sulfonamides or trimethoprim against multidrug resistant strains with partial or full synergy. However, the synergy appeared to be individual strain and small molecule drug combination-dependent.  相似文献   

2.
The proline-rich designer antibacterial peptide dimer A3-APO is currently under preclinical development for the treatment of systemic infections caused by antibiotic-resistant Gram-negative bacteria. The peptide showed remarkable stability in 25% mouse serum in vitro, exhibiting a half-life of approximately 100 min as documented by reversed-phase chromatography. Indeed, after a 30-min incubation period in undiluted mouse serum ex vivo, mass spectrometry failed to identify any degradation product. The peptide was still a major peak in full blood ex vivo, however, with degradation products present corresponding to amino-terminal cleavage. When injected into mice intravenously, very little, if any unmodified peptide could be detected after 30 min. Nevertheless, the major early metabolite, a full single-chain fragment, was detectable until 90 min, and this fragment exhibited equal or slightly better activity in the broth microdilution antimicrobial assay against a panel of resistant Enterobactericeae strains. The Chex1-Arg20 metabolite, when administered three times at 20 mg/kg to mice infected with a sublethal dose (over LD(50)) of an extended spectrum beta-lactamase-producing Escherichia coli strain, completely sterilized the mouse blood, similar to imipenem added at a higher dose. The longer and presumably more immunogenic prodrug A3-APO, injected subcutaneously twice over a 3-wk period, did not induce any antibody production, indicating the suitability of this peptide or its active metabolite for clinical development.  相似文献   

3.
了解2008年至2012年哈尔滨医科大学附属第一医院血培养常见病原菌构成及耐药性。对血培养分离出的病原菌进行鉴定,用MIC法、K-B法测定药物敏感性,用WHONET 5.6统计软件进行细菌菌谱及耐药性分析。共分离出病原菌4 245株;其中凝固酶阴性葡萄球菌最多,947株占22.3%;其次为大肠埃希菌822株,肺炎克雷伯菌520株,鲍曼不动杆菌195株,金黄色葡萄球菌142株;耐甲氧西林凝固酶阴性葡萄球菌(MRCNS)和耐甲氧西林金黄色葡萄球菌(MRSA)检出率分别为81.1%、38.8%,未发现耐万古霉素、利奈唑胺及替考拉宁的凝固酶阴性葡萄球菌和金黄色葡萄球菌;大肠埃希菌及肺炎克雷伯菌产ESBLs检出率分别为55.2%、53.8%,对头孢哌酮/舒巴坦、哌拉西林/他唑巴坦、头孢替坦、头孢西丁、阿米卡星的耐药率较低,对碳青霉烯类抗菌药物存在耐药现象;鲍曼不动杆菌对抗菌药物的耐药率普遍较高。及时、准确地对血培养分离出的病原菌进行监测,以便指导临床合理用药,控制耐药株的产生。  相似文献   

4.
The last three decades have seen a dwindling number of novel antibiotic classes approved for clinical use and a concurrent increase in levels of antibiotic resistance, necessitating alternative methods to combat the rise of multi-drug resistant bacteria. A promising strategy employs antibiotic adjuvants, non-toxic molecules that disarm antibiotic resistance. When co-dosed with antibiotics, these compounds restore antibiotic efficacy in drug-resistant strains. Herein we identify derivatives of tryptamine, a ubiquitous biochemical scaffold containing an indole ring system, capable of disarming colistin resistance in the Gram-negative bacterial pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli while having no inherent bacterial toxicity. Resistance was overcome in strains carrying endogenous chromosomally-encoded colistin resistance machinery, as well as resistance conferred by the mobile colistin resistance-1 (mcr-1) plasmid-borne gene. These compounds restore a colistin minimum inhibitory concentration (MIC) below the Clinical & Laboratory Sciences Institute (CLSI) breakpoint in all resistant strains.  相似文献   

5.
Aims: The antibacterial efficacy of zeolites containing copper (Cu) or silver (Ag) ions or a combination was assessed against several reported copper‐resistant (CuR) bacterial strains. Methods and Results: Comparison strains were obtained from the American Type Culture Collection that had no documented metal resistance. Reductions in bacterial populations were determined after exposure time intervals of 3, 6 and 24 h. All three CuR strains of Salmonella enterica exhibited resistance to Cu, Ag and Cu/Ag after three and 6 h of exposure. Both the CuR and comparison strain of Enterococcus faecium were resistant to both metals and the metal combination. CuRPseudomonas putida was significantly reduced by all zeolites within 3 h. The CuREscherichia coli strain was more sensitive to Cu, but more resistant to Ag than the comparison strain; however, significant reductions were achieved within 3 h with both Cu and Cu/Ag, and within 24 h with Ag. Conclusions: Some strains with reported resistance to Cu were also resistant to Ag, suggestive of a shared resistance mechanism such as an indiscriminate Cu efflux pump. Ent. faecium appears to have innate resistance to both metals. In general, Ent. faecium was the most resistant species to the individual metals and the combination of metals, Ps. putida the least resistant, and the Salmonella strains were more resistant than E. coli. Significance and Impact of the Study: Several of the comparison strains with no reported copper resistance were resistant to one or both metals. This may call into question the methods for determining bacterial metal resistance, which typically use nutrient‐rich media containing metals to assess the ability of the bacteria to grow in comparison with a wild‐type strain. Nevertheless, all the CuR strains evaluated in this study, with the exception of Ent. faecium, were reduced using the Cu and Ag zeolite combination.  相似文献   

6.
DnaK chaperones participate in essential cellular processes including the assistance of the folding, structural maintenance, trafficking, and degradation of proteins, the control of stress responses, and so on. In contrast to the situation found in most other bacterial groups, the cyanobacteria contain multiple dnaK homolog genes whose cellular roles remain ambiguous. We compared in this work the in vivo chaperone capabilities of the DnaK1 members from the halophyte Aphanothece halophytica and the freshwater species Synechococcus elongatus. The corresponding dnaK1 genes were expressed in Escherichia coli, and the abilities of the encoded chaperones to provide for both general and specific functions conducted by E. coli DnaK were analyzed. Synechococcus DnaK1 was far more effective than A. halophytica DnaK1 in replacing E. coli DnaK in all activities tested in vivo, including changes in cell morphology and downregulation of the heat shock response, prevention of the aggregation of misfolded proteins, and restoration of thermotolerance to dnaK-deficient mutants. Thus, regardless of an extensive sequence similarity and comparable in vitro chaperone capabilities, the two cyanobacterial DnaK1 chaperones functionally differed under in vivo conditions. The overall results reinforce the notion that A. halophytica DnaK1 and Synechococcus DnaK1 evolved different substrate specificity since they separated from a common ancestor.  相似文献   

7.
Feeding of bacterially encapsulated heat shock proteins (Hsps) to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of Escherichia coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic Vibrio campbellii. The relationship between Hsp accumulation and enhanced resistance to infection may involve DnaK, the prokaryotic equivalent to Hsp70, a major molecular chaperone in eukaryotic cells. In support of this proposal, heat-stressed bacterial strains LVS 2 (Bacillus sp.), LVS 3 (Aeromonas hydrophila), LVS 8 (Vibrio sp.), GR 8 (Cytophaga sp.), and GR 10 (Roseobacter sp.) were shown in this work to be more effective than nonheated bacteria in protecting gnotobiotic Artemia larvae against V. campbellii challenge. Immunoprobing of Western blots and quantification by enzyme-linked immunosorbent assay revealed that the amount of DnaK in bacteria and their ability to enhance larval resistance to infection by V. campbellii are correlated. Although the function of DnaK is uncertain, it may improve tolerance to V. campbellii via immune stimulation, a possibility of significance from a fundamental perspective and also because it could be applied in aquaculture, a major method of food production.  相似文献   

8.
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host–pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet‐activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community‐acquired pneumonia in the elderly, we explored the role of A1 in the age‐driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial–host interactions.  相似文献   

9.
Pyrrhocoricin and drosocin, representatives of the short, proline-rich antimicrobial peptide family kill bacteria by inactivating the bacterial heat shock protein DnaK and inhibiting chaperone-assisted protein folding. The molecular architecture of these peptides features an N-terminal DnaK-binding half and a C-terminal delivery unit, capable of crossing bacterial membranes. Cell penetration is enhanced if multiple copies of pyrrhocoricin are conjugated. To obtain drug leads with improved antimicrobial properties, and possible utility as therapeutic agents, we synthesized chimeric dimers, in which pyrrhocoricins potent DnaK-binding domain was connected to drosocins superior cell penetrating module. Indeed, the new constructs not only exhibited enhanced in vitro antibacterial properties against the originally sensitive strains Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium, but also showed activity against Staphylococcus aureus, a bacterial strain resistant to native pyrrhocoricin and drosocin. The improved antimicrobial profile could be demonstrated with assays designed to distinguish intracellular or membrane activities. While a novel mixed pyrrhocoricin–drosocin dimer and the purely pyrrhocoricin-based old dimer bound E. coli DnaK with an identical 4 M Kd, the mixed dimers penetrated a significantly larger number of E. coli and S. aureus cells than the previous analogs and destroyed a larger percentage of bacterial membrane structures. Toxicity to human red blood cells could not be observed up to the highest peptide concentration tested, 640 M. In addition, repetitive reculturing of E. coli or S. aureus cells with sublethal concentrations of the mixed dimer did not result in resistance induction to the novel peptide antibiotic. The new concept of pyrrhocoricin–drosocin mixed dimers yields antibacterial peptide derivatives acting with a multiple mode of action, and can serve as a useful addition to the current antimicrobial therapy repertoire.  相似文献   

10.
DnaK, the bacterial homolog of human Hsp70, plays an important role in pathogens survival under stress conditions, like antibiotic therapies. This chaperone sequesters protein aggregates accumulated in bacteria during antibiotic treatment reducing the effect of the cure. Although different classes of DnaK inhibitors have been already designed, they present low specificity. DnaK is highly conserved in prokaryotes (identity 50–70%), which encourages the development of a unique inhibitor for many different bacterial strains. We used the DnaK of Acinetobacter baumannii as representative for our analysis, since it is one of the most important opportunistic human pathogens, exhibits a significant drug resistance and it has the ability to survive in hospital environments. The E.coli DnaK was also included in the analysis as reference structure due to its wide diffusion. Unfortunately, bacterial DnaK and human Hsp70 have an elevated sequence similarity. Therefore, we performed a differential analysis of DnaK and Hsp70 residues to identify hot spots in bacterial proteins that are not present in the human homolog, with the aim of characterizing the key pharmacological features necessary to design selective inhibitors for DnaK. Different conformations of DnaK and Hsp70 bound to known inhibitor-peptides for DnaK, and ineffective for Hsp70, have been analysed by molecular dynamics simulations to identify residues displaying stable and selective interactions with these peptides. Results achieved in this work show that there are some residues that can be used to build selective inhibitors for DnaK, which should be ineffective for the human Hsp70.  相似文献   

11.
The dnaK gene was cloned from the obligate thermophile Bacillus thermoglucosidasius KP1006, together with the grpE and dnaJ genes in the same operon. The dnaK, grpE and dnaJ genes showed high identity with those of other bacterial strains, particularly with those of Bacillus stearothermophilus NUB36, despite an extremely low homology for the corresponding total genomic DNA. There were significant differences in the proline content of the DnaK operon proteins which is closely correlated with the thermostability of enzyme proteins. The proline content was higher in the GrpE, DnaK and DnaJ proteins of the thermophilic as opposed to the mesophilic strains. The overexpression of the B. thermoglucosidasius DnaK protein in Escherichia coli MV1184 results in extreme filamentation without inhibition on cell growth. The B. thermoglucosidasius DnaK protein seemed to exclusively disturb septation in E. coli cells which suggests that it interacts with key protein(s) involved in cell septation.  相似文献   

12.
The sensitivity of strains ofEscherichia coli, with and without the RP1 R-factor, to antibiotics and other antibacterial agents has been studied. RP1+ strains ofE. coli were resistant to kanamycin, carbenicillin, and tetracycline, resistance to the first two antibiotics being produced by destruction of the drugs. This resistance could be transferred to two strains ofPseudomonas aeruginosa. The parent strain ofE. coli UB 1005, its two mutant strains (DC2 and DC3), and two of the strains with the RP1 R-factor showed a similar order of sensitivity to phenylmercuric nitrate, chlorhexidine, thiomersal, and mercuric chloride.E. coli strains DC2 and DC2 (RP1+) were the most sensitive to benzalkonium chloride and cetrimide. RP1+ strains were more resistant than RP1 strains to lysozyme-ethylenediaminetetraacetic acid, but treatment of the former strains with acriflavine rendered the cells more sensitive to the lytic system. There was no evidence thatP. aeruginosa (RP1+) strains possessed increased resistance to polymyxin or to disinfectants, although they became somewhat less sensitive to lysozyme-ethylenediaminetetraacetic acid.  相似文献   

13.

Enterobacteriaceae members are largely distributed in the environment and responsible for a wide range of bacterial infections in hospitalized patients. Pseudomonas aeruginosa (P. aeruginosa) causes severe nosocomial infections associated with severe inflammation due to its potent virulent factors including lipopolysaccharide (LPS). The aim of this study is to assess the bacterial LPS effect on Enterobacteriaceae biofilm and other virulence factors in vitro. The effect of P. aeruginosa LPS on biofilm formation of two other species of Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) was assessed using a standard biofilm assay. PCR was performed on genes of biofilm and virulence factors. Expression of biofilm, type-1-fimbriae and serum resistance genes in treated and untreated cells was measured with RT-PCR. P. aeruginosa LPS has the ability to stimulate biofilm formation and stabilize the already formed biofilm significantly in all tested strains. In addition, LPS significantly increased the level of expression of Bss, FimH, and Iss genes when measured by RT-PCR. P. aeruginosa LPS has a direct stimulatory effect on the biofilm formation, type-1-fimbriae, and serum resistance in both E. coli and K. pneumoniae. So, the presence of P. aeruginosa in mixed infection with Enterobactereacea leads to increase their virulence.

  相似文献   

14.

Background

Klebsiella pneumoniae is a clinically significant species of bacterium which causes a variety of diseases. Clinical treatment of this bacterial infection is greatly hindered by the emergence of multidrug-resistant strains. The resistance is largely due to the acquisition of plasmids carrying drug-resistant as well as pathogenic genes, and its conjugal transfer facilitates the spread of resistant phenotypes.

Methodology/Principal Findings

The 70,057 bp plasmid pKF3-70, commonly found in Klebsiella pneumoniae, is composed of five main functional modules, including regions involved in replication, partition, conjugation, transfer leading, and variable regions. This plasmid is more similar to several Escherichia coli plasmids than any previously reported K. pneumoniae plasmids and pKF3-70 like plasmids share a common and conserved backbone sequence. The replication system of the pKF3-70 is 100% identical to that of RepFII plasmid R100 from E. coli. A beta-lactamase gene ctx-m-14 with its surrounding insertion elements (ISEcp1, truncated IS903 and a 20 bp inverted repeat sequence) may compose an active transposon which is directly bordered by two putative target repeats “ATTAC.”

Conclusions/Significance

The K. pneumoniae plasmid pKF3-70 carries an extended-spectrum beta-lactamase gene, ctx-m-14. The conjugative characteristic makes it a widespread plasmid among genetically relevant genera which poses significant threat to public health.  相似文献   

15.
Plasmid-mediated transfer of drug-resistance genes among various bacterial species is considered one of the most important mechanisms for the spread of multidrug resistance. To gain insights into the evolution of gene organization and antimicrobial resistance in clinical bacterial samples, a complete plasmid genome of Klebsiella pneumoniae pKF3-140 is determined, which has a circular chromosome of 147,416 bp in length. Among the 203 predicted genes, 142 have function assignment and about 50 appear to be involved in plasmid replication, maintenance, conjugative transfer, iron acquisition and transport, and drug resistance. Extensive comparative genomic analyses revealed that pKF3-140 exhibits a rather low sequence similarity and structural conservation with other reported K. pneumoniae plasmids. In contrast, the overall organization of pKF3-140 is highly similar to Escherichia coli plasmids p1ESCUM and pUTI89, which indicates the possibility that K. pneumoniae pKF3-140 may have a potential origin in E. coli. Meanwhile, interestingly, several drug resistant genes show high similarity to the plasmid pU302L in Salmonella enterica serovar Typhimurium U302 strain G8430 and the plasmid pK245 in K. pneumoniae. This mosaic pattern of sequence similarities suggests that pKF3-140 might have arisen from E. coli and acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among enteric bacteria.  相似文献   

16.
肺炎克雷伯菌(Klebsiella pneumoniae)是在临床引起多种感染的常见条件致病菌之一。多重耐药肺炎克雷伯菌株的出现,给防控细菌感染带来了巨大阻力。肺炎克雷伯菌噬菌体编码的解聚酶是一种稳定性高、特异性强的生物酶,具有分解细菌胞外多糖、限制细菌生长等多种功能。解聚酶可为防控肺炎克雷伯菌感染提供新思路,在抗菌应用中具有广阔前景。本文就肺炎克雷伯菌噬菌体解聚酶的研究进展进行综述。  相似文献   

17.
微生物细胞在自然环境或工业应用中经常受到酸胁迫,严重制约细胞生长性能和产物合成效率。为了在各种酸性环境中生存,耐酸细菌发展出多种保护机制来维持细胞内pH稳态,如氢离子消耗、细胞膜保护、代谢修饰等。因此,深入研究耐酸机制、改进菌株耐酸能力对于利用微生物发酵合成高附加值产品具有重要意义。作为模式微生物,大肠杆菌耐酸机制的研究较为透彻,近年来其耐酸性改造也取得了重大进展。本文主要总结了大肠杆菌的氧化或葡萄糖抑制系统(acid resistance system 1, AR1)、谷氨酸依赖型耐酸系统(acid resistance system 2, AR2)、精氨酸依赖型耐酸系统(acid resistance system 3, AR3)、赖氨酸依赖型耐酸系统(acid resistance system 4, AR4)和鸟氨酸依赖型耐酸系统(acid resistance system 5, AR5)、细胞膜保护以及生物大分子修复等方面的耐酸机制,并概述了利用传统代谢工程、全局转录工程和适应性实验室进化等方法构建大肠杆菌耐酸菌株的研究进展,同时展望了大肠杆菌耐酸机制及其改造的后续研究方向...  相似文献   

18.
Klebsiella pneumoniae has become the number one bacterial pathogen that causes high mortality in clinical settings worldwide. Clinical K. pneumoniae strains with carbapenem resistance and/or hypervirulent phenotypes cause higher mortality comparing with classical K. pneumoniae strains. Rapid differentiation of clinical K. pneumoniae with high resistance/hypervirulence from classical K. pneumoniae would allow us to develop rational and timely treatment plans. In this study, we developed a convolution neural network (CNN) as a prediction method using Raman spectra raw data for rapid identification of ARGs, hypervirulence-encoding factors and resistance phenotypes from K. pneumoniae strains. A total of 71 K. pneumoniae strains were included in this study. The minimum inhibitory concentrations (MICs) of 15 commonly used antimicrobial agents on K. pneumoniae strains were determined. Seven thousand four hundred fifty-five spectra were obtained using the InVia Reflex confocal Raman microscope and used for deep learning-based and machine learning (ML) algorithms analyses. The quality of predictors was estimated in an independent data set. The results of antibiotic resistance and virulence-encoding factors identification showed that the CNN model not only simplified the classification system for Raman spectroscopy but also provided significantly higher accuracy to identify K. pneumoniae with high resistance and virulence when compared with the support vector machine (SVM) and logistic regression (LR) models. By back-testing the Raman-CNN platform on 71 K. pneumoniae strains, we found that Raman spectroscopy allows for highly accurate and rationally designed treatment plans against bacterial infections within hours. More importantly, this method could reduce healthcare costs and antibiotics misuse, limiting the development of antimicrobial resistance and improving patient outcomes.  相似文献   

19.
The effluent of a pharmaceutical company was examined microbiologically. Its bacterial count was 2.15 × 105 c.f.u./ml and there was evidence of faecal contamination with MPN of > 1800. The organisms encountered included Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Serratia marcescens and Pseudomonas aeruginosa. The resistances of the 25 bacterial strains isolated from the effluent to the commonly used antibiotics were studied. About 80% of the isolates were resistant to Amoxycillin, 76% to Nitrofurantoin, 64% to Cotrimoxazole and Augmentin, 60% were resistant to Nalidixic acid, 52% were resistant to Tetracycline and Ofloxacin, while resistance of 12% was obtained for Gentamicin. Among the eight antibiotics tested, seven patterns of drug resistance were obtained and all of them were multiple-drug resistance with the number of antibiotics ranging from 2–8. All the strains of E. coli and S. aureus had high MIC values for Cloxacillin and Amoxycillin. In all, 13 strains of the bacterial isolates had evidence for the production of -lactamases. The potential of the effluent in spreading drug resistance and the public health implications are discussed.  相似文献   

20.
大熊猫源肺炎克雷伯菌生物学特性   总被引:1,自引:0,他引:1  
【背景】肺炎克雷伯菌是仅次于大肠杆菌的常见条件致病菌之一,严重时可导致大熊猫发生出血性肠炎、全身性败血症等。【目的】明确大熊猫源肺炎克雷伯菌的生物学特性,对防控该病作出科学指导。【方法】分别采用结晶紫染色法、拉丝实验、K-B纸片法和PCR技术对46株大熊猫源肺炎克雷伯菌的生物被膜形成能力、高黏性表型、耐药表型和15种常见毒力基因等生物学特性进行研究,并根据以上生物学特性选择一株可能具有致病性的分离菌pneumoniae-X-5,研究其对小鼠的致病性。【结果】46株肺炎克雷伯菌均可形成荚膜;12株为高黏性表型肺炎克雷伯菌;能形成生物被膜的菌株占比为65%(30/46);分离出的46株菌中多重耐药菌株占58%(27/46),对氨苄西林、苯唑西林、青霉素、万古霉素呈100%耐药;毒力基因检出率最高的为ureA(91.30%,42/46)。pneumoniae-X-5菌株对小鼠的LD50为8.9×104CFU/mL;该菌株攻毒小鼠肺泡间隔增厚,炎性细胞浸润,肝细胞变性坏死,脾充血,十二指肠黏膜上皮和固有层分离,固有层部分细胞坏死。死亡小鼠脾脏含细菌量最多,其次为肝脏。【结论】本试验阐明了部分大熊猫源肺炎克雷伯菌的多重耐药性、能形成生物被膜、具有高黏表型等病原生物学特性,为大熊猫肺炎克雷伯杆菌病的防控及临床治疗提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号