首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The metabolism of 25-hydroxyvitamin D3 [25(OH)D3] was examined in several phagocytic cells including alveolar macrophages and myeloid leukemia cells (M1, HL-60 and U937). Phagocytic cells converted 25(OH)D3 to 10-oxo-19-nor-25-hydroxyvitamin D3 and a new metabolite. The former metabolite was dominant in shorter incubation periods (1 h), whereas the latter dominated over longer incubation periods (24 h). The new metabolite was produced from 25(OH)D3 directly but not through 10-oxo-19-nor-25-hydroxyvitamin D3. The new metabolite was unequivocally identified as 8 alpha,25-dihydroxy-9-10-seco-4,6,10(19)-cholestatrien-3-one. These results suggest that phagocytic cells somehow promote oxidation of the triene part of vitamin D compounds.  相似文献   

3.
4.
The murine myelomonocytic leukemia cell line WEHI-3B D+, which differentiates in response to granulocyte colony stimulating factor (G-CSF), can also be induced to differentiate into monocyte-macrophages by phorbol myristate acetate (PMA) treatment, whereas the WEHI-3B D- subline, which is unresponsive to G-CSF and PMA, can be induced to differentiate to granulocytes as well as monocytes by 1,25-dihydroxycholecalciferol [1,25-(OH)2 D3], the biologically active metabolite of vitamin D3. A newly developed variant of the WEHI-3B D+ line, named WEHI-3B D+ G, which was responsive to G-CSF but not to PMA, was also differentiated to granulocytes by 1,25-(OH)2 D3. Although vitamin D3 has been reported to induce macrophage differentiation in responsive tumor cells, this is the first demonstration that 1,25-(OH)2 D3 can induce granulocyte differentiation. In both differentiation pathways, cessation of cellular proliferation accompanies changes in morphologic and cytochemical properties of the cells. This suggests that leukemic cell lines unresponsive to differentiation agents acting at the cell surface retain their ability to differentiate in response to agents that do not act via the plasma membrane such as 1,25-(OH)2 D3, which has cytosolic/nuclear receptors. Vitamin D3 could act through different cellular pathways inducing differentiation or by bypassing only the first step of a common differentiation cascade used by agents with cell surface receptors such as CSF. These results suggest that low doses of 1,25-(OH)2 D3 may be useful in combination with hemopoietic growth factors (CSFs) as therapeutic agent to induce leukemic cell differentiation in vivo.  相似文献   

5.
Shany S  Levy Y  Lahav-Cohen M 《Steroids》2001,66(3-5):319-325
It is well established that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, plays a role in regulating proliferation and differentiation of cells, in addition to its classic function in mineral homeostasis. Recent studies have also provided evidence for the involvement of 1alpha,25(OH)(2)D(3) in regulating the immune system. However, therapeutic application of 1alpha,25(OH)(2)D(3) to hyperproliferative diseases such as cancer, or for immunologic purposes, is thwarted by its hypercalcemic activity. In order to overcome this obstacle, analogs of 1alpha,25(OH)(2)D(3) have been produced that exhibit decreased hypercalcemic activity while retaining the growth and immunologic regulating properties. In the present study, the efficacy of 1alpha,24(S)-dihydroxyvitamin D(2) (1alpha,24(S)(OH)(2)D(2)), a vitamin D(2) analog, in restraining cell proliferation was compared to that of 1alpha,25(OH)(2)D(3). In parallel studies, cancer cell lines were grown in increased concentrations (10(-10)-10(-7) M) of each compound for various incubation periods (1-4 days). Growth was assessed by measuring [(3)H]thymidine incorporation. The results revealed that 1alpha,24(S)(OH)(2)D(2) significantly inhibits proliferation to an extent similar to that observed for 1alpha,25(OH)(2)D(3). Moreover, incubating the human leukemia cell line, HL-60, with 1alpha,24(S)(OH)(2)D(2) resulted in an induction of differentiation of these promyelomonocyte cells into monocyte-macrophage-like cells, in a manner similar to that observed with 1alpha,25(OH)(2)D(3). Using a Western procedure, it was also shown that 1alpha,24(S)(OH)(2)D(2) like 1alpha,25(OH)(2)D(3) enhances the expression of vitamin D receptors (VDR) in the rat osteosarcoma cell line, ROS 17/2.8. The expression of tumor necrosis factor (TNF) alpha (TNF-alpha) in human peritoneal macrophages (HPM) obtained from uremic patients treated with continuous ambulatory peritoneal dialysis (CAPD) was found to be regulated by 1alpha,25(OH)(2)D(3) as well as by 1alpha,24(S)(OH)(2)D(2). Incubations of HPM with 1alpha,25(OH)(2)D(3) or 1alpha,24(S)(OH)(2)D(2), have inhibited the expression of TNF-alpha on both mRNA and protein levels. These results suggest that 1alpha,25(OH)(2)D(3) has a role in controlling the rate of inflammation in the peritoneal cavity of CAPD treated patients. Since 1alpha,24(S)(OH)(2)D(2) does not cause hypercalcemia, the present results encourage the possible use of this vitamin D(2) analog in the treatment of cancer and hyper-inflammatory diseases.  相似文献   

6.
7.
8.
The active vitamin D analog, 19-nor-1alpha,25-dihydroxyvitamin D2 (19-nor-1alpha,25-(OH)2D2), has a similar structure to the natural vitamin D hormone, 1a,25-dihydroxyvitamin D3 (1alpha,25-(OH)2D3), but lacks the C10-19 methylene group and possesses an ergosterol/ vitamin D2 rather than a cholesterol/vitamin D3 side chain. We have used this analog to investigate whether any of these structural features has any effect upon the type and rate of in vitro metabolism observed. Using a vitamin D-target cell, the human keratinocyte, HPK1A-ras, we observed formation of a number of metabolites, three of which were purified by extensive HPLC and conclusively identified by a combination of GC-MS and chemical derivatization as 19-nor-1alpha,24,25-(OH) 3D2, 19-nor-1alpha,24,25,26-(OH) 4D2, and 19-nor-1alpha,24,25,28-(OH)4,D2. The first metabolite is probably a product of the vitamin D-inducible cytochrome P450, P450cc24 (CYP24), while the latter two metabolites are likely to be further metabolic products of 19-nor-1alpha,24,25-(OH)3D2. These hydroxylated metabolites resemble those identified by other workers as products of the metabolism of 1alpha,25-(OH)2D2 in the perfused rat kidney. It therefore appears from the similar metabolic fate of 19-nor-1alpha,25-(OH)2D2 and 1alpha,25-(OH)2D2 that the lack of the C10-19 methylene group has little effect upon the nature of the lipid-soluble metabolic products and the rate of formation of these products seems to be comparable to that of products of 1alpha,25-(OH)2D3 in vitamin D-target cells. We also found extensive metabolism of 19-nor-1alpha,25(OH)2D2 to water-soluble metabolites in HPK1A-ras, metabolites which remain unidentified at this time. When we incubated 19-nor-1alpha,25-(OH)2D2 with the liver cell line HepG2, we obtained only 19-nor-1alpha,24,25-(OH)3D2. We conclude that 19-nor-1alpha,25-(OH)2D2 is efficiently metabolized by both vitamin D-target cells and liver cells.  相似文献   

9.
We have studied the production of interleukin 6 (IL-6) and its relation to the macrophage differentiation in murine myeloid leukemia cells (M1). As has been reported, differentiation-inducing factor (D-factor), 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3], and recombinant IL-6 similarly induced differentiation of M1 cells into macrophages. The three compounds also induced mRNA expression of IL-6 in M1 cells. M1 cells treated with D-factor or 1 alpha, 25(OH)2D3 produced biologically active IL-6, but the amounts of IL-6 secreted into culture media did not appear to be enough to induce differentiation of M1 cells. Furthermore, simultaneous addition of anti-IL-6 antibody did not suppress the differentiation of M1 cells induced by D-factor or 1 alpha, 25(OH)2D3. These results show that IL-6 production is an essential property associated with the macrophage differentiation of M1 cells, but it may not be responsible for the D-factor- and 1 alpha, 25(OH)2D3-induced differentiation.  相似文献   

10.
The 1alpha-hydroxylated metabolite of 25-hydroxyvitamin D(3), 1,25-dihydroxyvitamin D(3), is the biologically most active metabolite of vitamin D. The 24-hydroxylated metabolites were generally considered as degradation products of a catabolic pathway finally leading to excretion of calcitroic acid. Studies with analogues fluorinated at the C-24 position did not indicate a physiological function for 24R,25(OH)(2)D(3). Nevertheless throughout the years various studies showed biologic effects of other metabolites than 1alpha,25(OH)(2)D(3). In particular the metabolite 24R,25(OH)(2)D(3) has been functionally analyzed, e.g. with respect to a role in normal chicken egg hatchability and effects on chondrocytes in the resting zone of cartilage. Numerous studies have shown the presence of the vitamin D receptor in bone cells and effects of 1alpha,25(OH)(2)D(3) on bone and bone cells. Also for 24R,25(OH)(2)D(3) studies have been performed focusing on effects on bone and bone cells. The purpose of this review is to summarize the data regarding 24R,25(OH)(2)D(3) and bone and to evaluate its role in bone biology.  相似文献   

11.
12.
The human promyelocytic leukemia cell line HL-60 undergoes macrophage-like differentiation after exposure to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the biologically active metabolite of vitamin D3. In the current study, we demonstrate that 1,25(OH)2D3 also regulates 25-hydroxyvitamin D3 [25(OH)D3] metabolism in HL-60 cells. The presence of 1,25(OH)2D3 in the culture medium of HL-60 cells stimulated the conversion of 7-10% of the substrate [25(OH)D3] to a more polar metabolite, which was identified as 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] from the elution positions on sequential HPLC systems and the sensitivity to periodate treatment. The HL-60 subclone HL-60 blast, which is unresponsive to 1,25(OH)2D3 in terms of differentiation, also responded to 1,25(OH)2D3 treatment with the production of 24,25(OH)2D3. Maximal stimulation of 24,25(OH)2D3-synthesis (approximately 7 pmol/5 X 10(6) cells) in HL-60 cells was noted with a 12-h exposure to 10(-9) M 1,25(OH)2D3. The ability of vitamin D3 metabolites other than 1,25(OH)2D3 to induce the synthesis of 24,25(OH)2D3 in HL-60 cells was, with the exception of 1 alpha-hydroxyvitamin D3, in correlation with their reported affinities for the specific 1,25(OH)2D3 receptor which is present in HL-60 cells. Treatment of HL-60 cells with phorbol diesters abolished the 1,25(OH)2D3 responsiveness, while treatment with dimethylsulfoxide and interferon gamma did not markedly alter the 25(OH)D3 metabolism of HL-60 cells. Small amounts (approximately 1% of substrate) of two 25(OH)D3 metabolites, which comigrated with 5(E)- and 5(Z)-19-nor-10-keto-25-hydroxyvitamin D3 on two HPLC solvent systems, were synthesized by HL-60 cells, independently from 1,25(OH)2D3 treatment or stage of cell differentiation. Our results indicate that 1,25(OH)2D3 influences 25(OH)D3 metabolism of HL-60 cells independently from its effects on cell differentiation.  相似文献   

13.
The secosteroid hormone, 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)], induces differentiation of the human promyelocytic leukemia (HL-60) cells into monocytes/macrophages. At present, the metabolic pathways of 1alpha,25(OH)(2)D(3) and the biologic activity of its various natural intermediary metabolites in HL-60 cells are not fully understood. 1alpha,25(OH)(2)D(3) is metabolized in its target tissues via modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway initiated by hydroxylation at C-24 leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways initiated by hydroxylations at C-23 and C-26 respectively together lead to the formation of the end product, 1alpha,25(OH)(2)D(3)-lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 to form 1alpha,25-dihydroxy-3-epi-vitamin-D(3). We performed the present study first to examine in detail the metabolism of 1alpha,25(OH)(2)D(3) in HL-60 cells and then to assess the ability of the various natural intermediary metabolites of 1alpha,25(OH)(2)D(3) in inducing differentiation and in inhibiting clonal growth of HL-60 cells. We incubated HL-60 cells with [1beta-(3)H] 1alpha,25(OH)(2)D(3) and demonstrated that these cells metabolize 1alpha,25(OH)(2)D(3) mainly via the C-24 oxidation pathway and to a lesser extent via the C-23 oxidation pathway, but not via the C-3-epimerization pathway. Three of the natural intermediary metabolites of 1alpha,25(OH)(2)D(3) derived via the C-24 oxidation pathway namely, 1alpha,24(R),25-trihydroxyvitamin D(3), 1alpha,25-dihydroxy-24-oxovitamin D(3) and 1alpha,23(S),25-trihydroxy-24-oxovitamin D(3) [1alpha,23(S),25(OH)(3)-24-oxo-D(3)] were almost as potent as 1alpha,25(OH)(2)D(3) in terms of their ability to differentiate HL-60 cells into monocytes/macrophages. We then selected 1alpha,23(S),25(OH)(3)-24-oxo-D(3) which has the least calcemic activity among all the three aforementioned natural intermediary metabolites of 1alpha,25(OH)(2)D(3) to examine further its effects on these cells. Our results indicated that 1alpha,23(S),25(OH)(3)-24-oxo-D(3) was also equipotent to its parent in inhibiting clonal growth of HL-60 cells and in inducing expression of CD11b protein. In summary, we report that 1alpha,25(OH)(2)D(3) is metabolized in HL-60 cells into several intermediary metabolites derived via both the C-24 and C-23 oxidation pathways but not via the C-3 epimerization pathway. Some of the intermediary metabolites derived via the C-24 oxidation pathway are found to be almost equipotent to 1alpha,25(OH)(2)D(3) in modulating growth and differentiation of HL-60 cells. In a previous study, the same metabolites when compared to 1alpha,25(OH)(2)D(3) were found to be less calcemic. Thus, the findings of our study suggest that some of the natural metabolites of 1alpha,25(OH)(2)D(3) may be responsible for the final expression of the noncalcemic actions that are presently being attributed to their parent, 1alpha,25(OH)(2)D(3).  相似文献   

14.
Recently, it has been reported that 25-hydroxyvitamin D3-1alpha-hydroxylase [1alpha(OH)ase, CYP27B1], required to convert non-toxic 25-hyxdroxyvitamin D3 [25(OH)D(3)] to its active metabolite [1alpha,25(OH)(2)D(3)], is present in the epithelial cells of the human colon. In the present study, the potential chemoprotective role of 25(OH)D(3) was evaluated for colon cancer using the HT-29, human colon cancer cell line. Colon cancer cells were treated with 25(OH)D(3) (500nM or 1muM), 1alpha,25(OH)(2)D(3) (500nM), cholecalciferol (D3, 1muM) or vehicle and cell number determined at days 2 and 5 post-treatment. Results showed that both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) induced dose- and time-dependent anti-proliferative effects on the HT-29 cells, with maximum inhibition noted at day 5. Western blot analyses revealed an up-regulation of VDR and 1alpha(OH)ase expression following 24h of treatment with 25(OH)D(3), and 1alpha,25(OH)(2)D(3). These results are consistent with the expression of VDR and 1alpha(OH)ase in samples of normal colonic tissue, aberrant crypt foci (ACFs) and colon adenocarcinomas. The VDR expression was sequentially increased from normal to pre-cancerous lesions to well-differentiated tumors and then decreased in poorly differentiated tumors. Expression of 1alpha(OH)ase was equally expressed in normal, pre-cancerous lesions and malignant human colon tissues. The increased expression of 1alpha(OH)ase in colon cancer cells treated with the pro-hormone and its anti-proliferative effects, suggest that 25(OH)D(3) may offer possible therapeutic and chemopreventive option in colon cancer.  相似文献   

15.
Metabolism of 25-[3H]hydroxyvitamin D3 was studied in peritoneal macrophages from renal failure patients on continuous ambulatory peritoneal dialysis (CAPD). Cells from 5 out of 8 patients with a history of peritonitis produced significant amounts of a metabolite chromatographically identical to 1 alpha,25(OH)2D3; but none was produced by cells from non-infected patients. The evidence strongly suggests that peritoneal macrophages stimulated by infection can metabolise 25OHD3 to the active vitamin D3 metabolite, 1 alpha,25(OH)2D3, when maintained in short-term primary culture.  相似文献   

16.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

17.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D(3)-26,23-lactone (1alpha,25-(OH)(2)D(3)-26,23-lactone) analogs on 1alpha,25(OH)(2)D(3)-induced differentiation of human leukemia HL-60 cells thought to be mediated by the genomic action of 1alpha, 25-dihydroxyvitamin D(3) (1alpha,25-(OH)(2)D(3)) and of acute promyelocytic leukemia NB4 cells thought to be mediated by non-genomic actions of 1alpha,25-(OH)(2)D(3). We found that the 1alpha,25-(OH)(2)D(3)-26,23-lactone analogs, (23S)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9647) and (23R)-25-dehydro-1alpha-hydroxyvitamin D(3)-26,23-lactone (TEI-9648), inhibited differentiation of HL-60 cells induced by 1alpha,25-(OH)(2)D(3). However, 1beta-hydroxyl diastereomers of these analogs, i.e. (23S)-25-dehydro-1beta-hydroxyvitamin D(3)-26, 23-lactone (1beta-TEI-9647) and (23R)-25-dehydro-1beta-hydroxyvitamin D(3)-26,23-lactone (1beta-TEI-9648), did not inhibit differentiation of HL-60 cells caused by 1alpha,25-(OH)(2)D(3). A separate study showed that the nuclear vitamin D receptor (VDR) binding affinities of the 1-hydroxyl diastereomers were about 200 and 90 times weaker than that of 1alpha-hydroxyl diastereomers, respectively. Moreover, none of these lactone analogs inhibited NB4 cell differentiation induced by 1alpha,25-(OH)(2)D(3). In contrast, 1beta,25-dihydroxyvitamin D(3) (1beta,25-(OH)(2)D(3)) and 1beta,24R-dihydroxyvitamin D(3) (1beta,24R-(OH)(2)D(3)) inhibited NB4 cell differentiation but not HL-60 cell differentiation. Collectively, the results suggested that 1-hydroxyl lactone analogs, i.e. TEI-9647 and TEI-9648, are antagonists of 1alpha,25-(OH)(2)D(3), specifically for the nuclear VDR-mediated genomic actions, but not for non-genomic actions.  相似文献   

18.
19.
Human promyelocytic leukaemia cells (HL-60) can be induced to differentiate into mature granulocytes in vitro by 1 alpha,25-dihydroxycholecalciferol [1 alpha,25(OH)2D3], the active form of cholecalciferol. The differentiation-associated properties, such as phagocytosis and C3 rosette formation, were induced by as little as 0.12 nM-1 alpha,25(OH)2D3, and, at 12 nM, about half of the cells exhibited differentiation on day 3 of incubation. Concomitantly the viable cell number was decreased to less than half of the control. Among various derivatives of cholecalciferol examined, 1 alpha,25(OH)2D3 and 1 alpha,24R-dihydroxycholecalciferol were the most potent in inducing differentiation, followed successively by 1 alpha,24S-dihydroxycholecalciferol, 1 alpha-hydroxycholecalciferol, 25-hydroxycholecalciferol and 24R,25-dihydroxycholecalciferol. A cytosol protein specifically bound to 1 alpha,25 (OH)2D3 was found in HL-60 cells. Its physical properties closely resembled those found in such target tissues as intestine and parathyroid glands. 1 alpha,25(OH)2D3 bound to the cytosol receptor was transferred quantitatively to the chromatin fraction. The specificity of various derivatives of cholecalciferol in inducing differentiation was well correlated with that of their association with the cytosol receptor. These results are compatible with the hypothesis that the active form of cholecalciferol induces differentiation of human myeloid leukaemia cells by a mechanism similar to that proposed for the classical concept of steroid hormone action.  相似文献   

20.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号