首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Streptococcus lactis 133 has been isolated that lacks both glucokinase and phosphoenolpyruvate-dependent mannose-phosphotransferase (mannose-PTS) activities. The double mutant S. lactis 133 mannose-PTSd GK- is unable to utilize either exogenously supplied or intracellularly generated glucose for growth. Fluorographic analyses of metabolites formed during the metabolism of [14C]lactose labeled specifically in the glucose or galactosyl moiety established that the cells were unable to phosphorylate intracellular glucose. However, cells of S. lactis 133 mannose-PTSd GK- readily metabolized intracellular glucose 6-phosphate, and the growth rates and cell yield of the mutant and parental strains on sucrose were the same. During growth on lactose, S. lactis 133 mannose-PTSd GK- fermented only the galactose moiety of the disaccharide, and 1 mol of glucose was generated per mol of lactose consumed. For an equivalent concentration of lactose, the cell yield of the mutant was 50% that of the wild type. The specific rate of lactose utilization by growing cells of S. lactis 133 mannose-PTSd GK- was ca. 50% greater than that of the wild type, but the cell doubling times were 70 and 47 min, respectively. High-resolution 31P nuclear magnetic resonance studies of lactose transport by starved cells of S. lactis 133 and S. lactis 133 mannose-PTSd GK- showed that the latter cells contained elevated lactose-PTS activity. Throughout exponential growth on lactose, the mutant maintained an intracellular steady-state glucose concentration of 100 mM. We conclude from our data that phosphorylation of glucose by S. lactis 133 can be mediated by only two mechanisms: (i) via ATP-dependent glucokinase, and (ii) by the phosphoenolpyruvate-dependent mannose-PTS system.  相似文献   

2.
Functional capacities in Escherichia coli cells starved for glucose were examined by comparing protein synthesis, utilization of new substrates, and maintenance of viability with the adenylate energy charge of the culture. When growth ceased because of glucose exhaustion in an E. coli culture, the energy charge dropped from 0.90 to about 0.80. During this time, the viable-cell count and the capacity for protein synthesis and for induction of new enzymes were maintained only if other substrates were available in the medium. The culture could be maintained for many hours without growth or death if glucose was added slowly; the energy charge in this case stabilized at about 0.80. A consistent transient decrease in the energy charge to around 0.80, accompanied by a decrease in protein synthesis, was also observed during the adaptation from glucose to other substrates during diauxic growth on glucose and glycerol or lactose.  相似文献   

3.
4.
Measurements of the lactose repressor over a tenfold range of cell growth rates were made on protein extracts from Escherichia coli cultures grown in media with various carbon energy sources. The concentration of lactose repressor varied with the number of genome equivalents per cell over this range in growth rates, suggesting that the number of lactose molecules within the cell is determined by the number of I gene copies present. The timing of repressor synthesis during the cell division cycle and its correlation with deoxyribonucleic acid synthesis was examined by synchronizing the cell division cycle of E. coli ED1039, in which the Lac region has been transposed from 10 to 36 min on the genetic map. Measurements of lactose repressor in the synchronized culture revealed a burst of repressor synthesis at the time of I gene duplication. The concentration of lactose repressor was found to decrease as a function of total cell protein during the division cycle until an increase in synthesis occurred, suggesting that repressor synthesis probably does not occur throughout the division cycle. A model for I gene regulation is proposed.  相似文献   

5.
Growth factors and cytokines initiate multiple signal transduction pathways that lead to cell survival, cell cycle progression or differentiation. A common feature of these pathways is increased cellular metabolism and glucose uptake. Furthermore, the energy requirements of many cancers and transformed cell lines are met by constitutive upregulation of glucose uptake. Relationships among transforming events, glucose uptake and cell cycle progression are not well understood. Here we investigated the regulation of glucose transport during the cell cycle of growth factor-dependent 32D cells, primary T-cells, src-transformed 32D cells and Jurkat cells. Cells were enriched in the G1, S and G2/M phases of the cell cycle, and glucose transporter expression and 2-deoxyglucose uptake were measured. Glucose transporter expression increased with cell volume as cells progressed through the cell cycle. Growth factor-dependent 32D cells and T-lymphocytes were characterised by increased 2-deoxyglucose uptake from G1 to S and reduced uptake at G2/M, with the highest specific activity of transporters in the S phase. In contrast, src-transformed 32D cells and Jurkat cells showed increased 2-deoxyglucose uptake from S to G2/M, with the highest glucose transporter specific activity in G2/M. Our results show that glucose transport is regulated in a cell cycle-dependent manner and suggest that this regulation may be altered in transformed cells.  相似文献   

6.
Cells of Lactobacillus casei grown in media containing galactose or a metabolizable beta-galactoside (lactose, lactulose, or arabinosyl-beta-D-galactoside) were induced for a galactose-phosphoenolpyruvate-dependent phosphotransferase system (gal-PTS). This high-affinity system (Km for galactose, 11 microM) was inducible in eight strains examined, which were representative of all five subspecies of L. casei. The gal-PTS was also induced in strains defective in glucose- and lactose-phosphoenolpyruvate-dependent phosphotransferase systems during growth on galactose. Galactose 6-phosphate appeared to be the intracellular inducer of the gal-PTS. The gal-PTS was quite specific for D-galactose, and neither glucose, lactose, nor a variety of structural analogs of galactose caused significant inhibition of phosphotransferase system-mediated galactose transport in intact cells. The phosphoenolpyruvate-dependent phosphorylation of galactose in vitro required specific membrane and cytoplasmic components (including enzyme IIIgal), which were induced only by growth of the cells on galactose or beta-galactosides. Extracts prepared from such cells also contained an ATP-dependent galactokinase which converted galactose to galactose 1-phosphate. Our results demonstrate the separate identities of the gal-PTS and the lactose-phosphoenol-pyruvate-dependent phosphotransferase system in L. casei.  相似文献   

7.
A wild-type strain of Klebsiella oxytoca growing aerobically in batch culture has exhibited intermittent or oscillatory growth while growing on lactose at concentrations on the order of 1 g/L or less. In two-substrate experiments, preferred growth on glucose followed by growth on lactose also produced oscillatory growth behavior during the lactose growth phase at lactose concentrations of 1 g/L or less. Only oscillations in cell density have currently been observed. Alkalinization of the medium during growth on lactose indicated the presence of lactose active transport. The observed intermittent growth was reduced or removed during growth on lactose after preferred growth on galactose or in a medium containing 50 mM NaCl. Results suggested that the presence of an intracellular energy source or a sufficient DeltapH buffer may alleviate growth inhibition when transport and growth processes compete for essential energy resources during growth on lactose.  相似文献   

8.
Populations of bacteria often undergo a lag in growth when switching conditions. Because growth lags can be large compared to typical doubling times, variations in growth lag are an important but often overlooked component of bacterial fitness in fluctuating environments. We here explore how growth lag variation is determined for the archetypical switch from glucose to lactose as a carbon source in Escherichia coli. First, we show that single-cell lags are bimodally distributed and controlled by a single-molecule trigger. That is, gene expression noise causes the population before the switch to divide into subpopulations with zero and nonzero lac operon expression. While “sensorless” cells with zero preexisting lac expression at the switch have long lags because they are unable to sense the lactose signal, any nonzero lac operon expression suffices to ensure a short lag. Second, we show that the growth lag at the population level depends crucially on the fraction of sensorless cells and that this fraction in turn depends sensitively on the growth condition before the switch. Consequently, even small changes in basal expression can significantly affect the fraction of sensorless cells, thereby population lags and fitness under switching conditions, and may thus be subject to significant natural selection. Indeed, we show that condition-dependent population lags vary across wild E. coli isolates. Since many sensory genes are naturally low expressed in conditions where their inducer is not present, bimodal responses due to subpopulations of sensorless cells may be a general mechanism inducing phenotypic heterogeneity and controlling population lags in switching environments. This mechanism also illustrates how gene expression noise can turn even a simple sensory gene circuit into a bet hedging module and underlines the profound role of gene expression noise in regulatory responses.

Is ignorance bliss for some bacterial cells? Single-cell analysis of the archetypical switch from glucose to lactose as a carbon source in E. coli shows that bacteria can exhibit stochastic bimodal responses to external stimuli because the corresponding sensory circuit is so lowly expressed that some cells are effectively blind to the stimulus.  相似文献   

9.
We have investigated whether cell surface changes associated with growth control and malignant transformation are linked to the cell cycle. Chicken embryo cells synchronized by double thymidine block were examined for cell-cycle-dependent alterations in membrane function (measured by transport of 2-deoxyglucose, uridine, thymidine, and mannitol), in cell surface morphology (examined by scanning electron microscopy), and in the ability of tumor virus gene expression to induce a transformation-specific change in membrane function. We reach the following conclusions: (a) The high rate of 2-deoxyglucose transport seen in transformed cells and the low rates of 2-deoxyglucose and uridine transport characteristic of density-inhibited cells do not occur in normal growing cells as they traverse the cell cycle. (b) Although there are cell cycle-dependent changes in surface morphology, they are not reflected in corresponding changes in membrane function. (c) Tumor virus gene expression can alter cell membrane function at any stage in the cell cycle and without progression through the cell cycle.  相似文献   

10.
The expression of cell cycle events in Caulobacter crescentus CB13 has been shown to be associated with regulation of carbohydrate utilization. Growth on lactose and galactose depends on induction of specific enzymes. Prior growth on glucose results in a delay in enzyme expression and cell cycle arrest at the nonmotile, predivisional stage. Dibutyryl cyclic adenosine 3',5'-monophosphate (AMP) was shown to stimulate expression of the inducible enzymes and, thus, the initiation of the cell cycle. beta-Galactosidase-constitutive mutants did not exhibit a cell cycle arrest upon transfer of cultures from glucose to lactose. Furthermore, carbon source starvation results in accumulation of the cells at the predivisional stage. The cell cycle arrest therefore results from nutritional deprivation and is analogous to the general control system exhibited by yeast (Hartwell, Bacteriol. Rev. 38:164-198, 1974; Wolfner et al., J. Mol. Biol. 96:273-290, 1975), which coordinates cell cycle initiation with metabolic state. Transfer of C. crescentus CB13 from glucose to mannose did not result in a cell cycle arrest, and it was demonstrated that this carbon source is metabolized by constitutive enzymes. Growth on mannose, however, is stimulated by exogenous dibutyryl cyclic AMP without a concomitant increase in the specific activity of the mannose catabolic enzymes. The effect of cyclic AMP on growth on sugars metabolized by inducible enzymes, as well as on sugars metabolized by constitutive enzymes, may represent a regulatory system common to both types of sugar utilization, since they share features that differ from glucose utilization, namely, temperature-sensitive growth and low intracellular concentrations of cyclic guanosine 3',5'-monophosphate.  相似文献   

11.
Insulin is known to increase the number of cell surface insulin-like growth factor II (IGF-II) receptors in isolated rat adipose cells through a subcellular redistribution mechanism similar to that for the glucose transporter. The effects of insulin on these two processes, therefore, have now been directly compared in the same cell preparations. 1) Insulin increases the steady state number of cell surface IGF-II receptors by 7-13-fold without affecting receptor affinity; however, insulin stimulates glucose transport activity by 25-40-fold. 2) The insulin concentration required for half-maximal stimulation of cell surface IGF-II receptor number is approximately 30% lower than that for the stimulation of glucose transport activity. 3) The half-time for the achievement of insulin's maximal effect at 37 degrees C is much shorter for IGF-II receptor number (approximately 0.8 min) than for glucose transport activity (approximately 2.6 min). 4) Reversal of insulin's action at 37 degrees C occurs more rapidly for cell surface IGF-II receptors (t1/2 congruent to 2.9 min) than for glucose transport activity (t1/2 congruent to 4.9 min). 5) When the relative subcellular distribution of IGF-II receptors is examined in basal cells, less than 10% of the receptors are localized to the plasma membrane fraction indicating that most of the receptors, like glucose transporters, are localized to an intracellular compartment. However, in response to insulin, the number of plasma membrane IGF-II receptors increases only approximately 1.4-fold while the number of glucose transporters increases approximately 4.5-fold. Thus, while the stimulatory actions of insulin on cell surface IGF-II receptors and glucose transport activity are qualitatively similar, marked quantitative differences suggest that the subcellular cycling of these two integral membrane proteins occurs by distinct processes.  相似文献   

12.
The chemostat culture technique was used to study the control mechanisms which operate during utilization of mixtures of glucose and lactose and glucose and l-aspartic acid by populations of Escherichia coli B6. Constitutive mutants were rapidly selected during continuous culture on a mixture of glucose and lactose, and the beta-galactosidase level of the culture increased greatly. After mutant selection, the specific beta-galactosidase level of the culture was a decreasing function of growth rate. In cultures of both the inducible wild type and the constitutive mutant, glucose and lactose were simultaneously utilized at moderate growth rates, whereas only glucose was used in the inducible cultures at high growth rates. Catabolite repression was shown to be the primary mechanism of control of beta-galactosidase level and lactose utilization in continuous culture on mixed substrates. In batch culture, as in the chemostat, catabolite repression acting by itself on the lac enzymes was insufficient to prevent lactose utilization or cause diauxie. Interference with induction of the lac operon, as well as catabolite repression, was necessary to produce diauxic growth. Continuous cultures fed mixtures of glucose and l-aspartic acid utilized both substrates at moderate growth rates, even though the catabolic enzyme aspartase was linearly repressed with increasing growth rate. Although the repression of aspartase paralleled the catabolite repression of beta-galactosidase, l-aspartic acid could be utilized even at very low levels of the catabolic enzyme because of direct anabolic incorporation into protein.  相似文献   

13.
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.  相似文献   

14.
Induction of β-Galactosidase in Lactobacillus plantarum   总被引:5,自引:1,他引:4  
  相似文献   

15.
Cells of Escherichia coli ML308-225, harvested from the exponential phase, were heated in 50 mM potassium phosphate, and the loss in viability and inability to transport lactose, proline, and alpha-methylglucoside was compared. After cells were heated at 48 degrees C for 15 min, there was a 16% loss in viability and a similarly small reduction in the steady-state accumulation of lactose at 25 degrees C. The initial rates of lactose and proline transport were severely inhibited by heating at either 48 or 50 degrees C, but substantial recovery occurred within 5 to 7 min at 25 degrees C. Heating at 50 degrees C for 15 min caused an 86% loss in viability, but only a 53% decrease in the steady-state accumulation of lactose and only a 24% reduction in the initial rate of alpha-methylglucoside uptake. Twice as much alpha-methylglucoside was accumulated at 50 degrees C as at 25 degrees C. Although alpha-methylglucoside phosphate leaked from the cells at 50 degrees C, the concentration retained within the cells was about 500 times that externally, when only about 14% of the cells were viable. Overall, these results indicate that cells made nonviable by heating at 50 degrees C still have significant membrane integrity.  相似文献   

16.
In intact Escherichia coli cells, severe osmotic stress almost totally inhibited active transport of carbohydrate by all of the systems known to transport carbohydrates in E. coli: group translocation (glucose), binding-protein mediated transport (maltose), proton symport (lactose), and sodium cotransport (melibiose). Detailed study of glucose transport showed that this inhibition of transport was not secondary to the inhibition of growth by osmotic stress, but rather that the inhibition of transport of a source of carbon and energy was sufficient to cause the complete inhibition of growth observed during severe osmotic upshock. Transport and growth inhibition did not result from cell death; upshocked cells were viable and metabolically active.  相似文献   

17.
The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside (ONPG) by BAL-31, a marine Pseudomonas that acts as a host for bacteriophage PM2, was studied with intact cells and with cell-free extracts. A transport system for ONPG in whole cells and a beta-galactosidase activity in extracts were evident for cells grown on lactose minimal medium. It was found that the addition of isopropylthio-beta-D-galactopyranoside (IPTG) to cells growing in rich medium induced an ONPG hydrolytic activity detectable in cell extracts but cryptic in whole cells. The existence of a transport system for IPTG, which remained cryptic for ONPG, became apparent from studies of the rates of induction of beta-galactosidase as a function of cell mass at different concentrations of IPTG. The main properties of beta-galactosidase and the lactose transport system of BAL-31 were studied in terms of how they were affected by pH, temperature, or by the presence of several sugars. IPTG competitively inhibits the hydrolysis of ONPG by cell extracts. In cells pregrown on lactose, IPTG slightly inhibits the transport of ONPG. Glucose, and with less efficiency lactose, also inhibits the hydrolysis of ONPG in cell extracts. The growth of cells on lactose minimal medium was inhibited by the addition of IPTG. A mechanism for this inhibition and for the inhibition of ONPG transport by IPTG is discussed.  相似文献   

18.
19.
Summary A cheap medium, composed of skimmed milk powder, yeast extract, and glucose, for mass cultivation of the protozoon Tetrahymena thermophila has been developed. Cell concentrations of 5 x 106 cells/ml and unprecedented short generation times of only 1.4 h were determined in batch cultures. During the exponential phase of growth, daughter cells initiated a new cell division even before the previous division had been completed, resulting in the formation of cell chains. Addition of glucose extended the stationary phase. Using a bench-top fermentor supplied with a digital control unit the utilization of nutrient components in batch culture was monitored. Milk protein and glucose were consumed completely, but lactose only partly. Correspondence to: A. Tiedtke  相似文献   

20.
Phosphorylation of free galactose by lactic streptococci was mediated by an adenosine triphosphate (ATP)-dependent kinase. The phosphoenolpyruvate (PEP) phosphotransferase system (PTS) was involved to a limited extent in transport of the sugar. The conversion of free galactose to glucose also was demonstrated, and uridine diphosphogalactose-4-epimerase was demonstrated to account for this change. Galactose, supplied as lactose, was phosphorylated during transport by means of the PTS with PEP as the phosphate donor. Data also indicated that galactose derived from lactose was catabolized by the glycolytic pathway. Results showed the participation of ATP or PEP, or both, in the phosphorylation of five growth sugars for lactic streptococci, namely, galactose, glucose, lactose, maltose, and mannose. Free galactose was phosphorylated exclusively by ATP except when cells were grown on galactose; in this case, slight involvement of PEP in phosphorylation also was noted. Lactose phosphorylation was much more effective with PEP except when cells were grown on lactose, in which case ATP was equally effective. Glucose was phosphorylated to about the same degree by either ATP or PEP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号