首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We developed a LC-MS/MS method for the quantitative determination of the mercapturic acid (MA) metabolites of acrylamide (AA) AAMA and of its oxidative metabolite glycidamide (GA) GAMA in urine samples from the general population. The method requires 4 mL of urine which is solid phase extracted prior to LC-MS/MS analysis. The metabolites are detected by ESI-tandem mass spectrometry in negative ionisation mode and quantified by isotope dilution. Detection limits ranged down to 1.5 microg/L urine for both AAMA and GAMA. The imprecision expressed as R.S.D. lay between 2% and 6% for both analytes (intra- and inter-assay). First results on a small group of 29 persons out of the general population ranged from 5 to 338 microg/L AAMA and 相似文献   

2.
Determination of eprosartan in human plasma and urine by LC/MS/MS   总被引:1,自引:0,他引:1  
A protein precipitation, liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of eprosartan in human plasma and urine. The solvent system also served as a protein precipitation reagent. The chromatographic separation was achieved on a CAPCELL PAK C18 column (50 mmx2.0 mm, 5 microm, Shiseido). A mobile phase was consisted of 0.5% formic acid in water and 0.5% formic acid in acetonitrile (72:28). Detection was by positive ion electrospray tandem mass spectrometry on a Sciex API3000. The standard curves, which ranged from 5 to 2000 ng/mL in human plasma and from 0.25 to 50 microg/mL in urine, were fitted to a 1/x weighted quadratic regression model. The method proved to be accurate, specific and sensitive enough to be successfully applied to a pharmacokinetic study.  相似文献   

3.
A liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed to quantify colistin in human plasma and urine, and perfusate and urine from the isolated perfused rat kidney (IPK). Solid phase extraction (SPE) preceded chromatography on a Synergi Fusion-RP column with a mobile phase of acetonitrile, water and acetic acid (80/19/1) at 0.2mL/min. Ions were generated using electrospray ionization and detected in the positive-ion mode. Multiple reaction monitoring was performed using precursor-product ion combinations. Calibration curves were linear from 0.028microg/mL (human plasma, IPK perfusate and urine)/0.056microg/mL (human urine) to 1.78microg/mL (all four media) for colistin A sulfate; corresponding values for colistin B sulfate were 0.016/0.032 to 1.01microg/mL. Accuracy and precision were within 10%. The LLOQ for colistin A sulfate was 0.028microg/mL in human plasma, IPK perfusate and urine and 0.056microg/mL in human urine; corresponding values for colistin B sulfate were 0.016 and 0.032microg/mL. The low sample volume, short analysis time and low LLOQ are ideal for pre-clinical and human pharmacokinetic studies of colistin.  相似文献   

4.
Benzene and toluene are important industrial chemicals and ubiquitous environmental pollutants. The urinary mercapturic acids of benzene and toluene, S-phenylmercapturic acid (S-PMA) and S-benzylmercapturic acids (S-BMA) are specific biomarkers for the determination of low-level exposures. We have developed and validated a fast, specific and very sensitive method for the simultaneous determination of S-PMA and S-BMA in human urine using an automated multidimensional LC-MS-MS-method that requires no additional sample preparation. Analytes are stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column and subsequently determined by tandem mass spectrometry using isotopically labelled S-PMA as internal standard. The lower limit of quantification (LLOQ) for both analytes was 0.05 microg/L urine and sufficient to quantify the background exposure of the general population. Precision within series and between series for S-PMA and S-BMA ranged from 1.0% to 12.2%, accuracy was 108% and 100%, respectively. We applied the method on spot urine samples of 30 subjects of the general population with no known exposure to benzene or toluene. Median levels (range) for S-PMA and S-BMA in non-smokers (n=15) were 0.14 microg/L (<0.05-0.26 microg/L) and 8.2 (1.6-77.4 microg/L), respectively. In smokers (n=15), median levels for S-PMA and S-BMA were 1.22 microg/L (0.17-5.75 microg/L) and 11.5 microg/L (0.9-51.2 microg/L), respectively. Due to its automation, our method is well suited for application in large environmental studies.  相似文献   

5.
A simple and rapid HPLC method that includes ultrafiltration to remove plasma and peritoneal fluid protein was developed to determine doripenem concentrations in human plasma and peritoneal fluid. Doripenem was stabilized by immediate mixing of the plasma or peritoneal fluid with 1M 3-morpholinopropanesulfonic acid buffer (pH 7.0) (1:1). Doripenem and an internal standard were detected by measuring their ultraviolet absorbance at 300 nm. The calibration curves for doripenem in human plasma and peritoneal fluid were linear from 0.05 to 100 microg/mL. For plasma, both the intra- and the interday precision were less than 3.41% (CV), and the accuracy was between 97.4 and 101.7% above 0.05 microg/mL. For peritoneal fluid, the intra- and the interday precision were less than 2.98% (CV), and the accuracy was between 94.4 and 103.9% above 0.05 microg/mL. The limit of detection was 0.02 microg/mL in both plasma and peritoneal fluid. The assay has been applied to the therapeutic drug monitoring of doripenem in both plasma and peritoneal fluid.  相似文献   

6.
Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiologic and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than curcumin. However, evaluation of clinical efficacy is limited by lack of sensitive methods for quantifying intake/absorption in blood or urine. We have developed a sensitive high performance liquid chromatography (HPLC) analytical method for detection of THC in plasma and urine. The method involves extracting the THC from 0.2 mL samples with 95% ethyl acetate/5% methanol, and beta-17-estradiol acetate as an internal standard. Analysis with a reversed-phase C18 column and UV detection at 280 nm demonstrates linear performance from 0.050 to 6.0 microg/mL in plasma, and 0.060 to 6.0 microg/mL in urine. The coefficients of variation for intra- and inter-assays were each<8.6%. The average recovery of THC from plasma and urine was greater than 98.5%. These data demonstrate a rapid, sensitive and accurate method for HPLC quantification of THC in plasma and urine.  相似文献   

7.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

8.
A simple high-performance liquid chromatography (HPLC) method has been developed and validated for the simultaneous determination of abacavir and zidovudine (AZT) in rat plasma, amniotic fluid, fetal, and placental tissues. Extraction of abacavir, AZT, and the internal standard, azidouridine (AZDU) in amniotic fluid was carried out by protein precipitation. Extraction from plasma, fetal and placental homogenates was achieved by using a salting out technique. Chromatographic separation was performed using a C8 column (150 mm x 4.6 mm, 5 microm). The mobile phase consisted of 12% acetonitrile in 25 mM sodium phosphate buffer (adjusted to pH 7 with sodium hydroxide) for the fetus, placenta, plasma and amniotic fluid samples at a flow rate of 0.8 mL/min. The method was validated over the range from 0.05 to 50 microg/mL for both abacavir and AZT in the four biological matrices. The absolute recovery of abacavir ranged from 79 to 94%, while AZT recoveries ranged from 79 to 90% in the different biological matrices. The internal standard recovery ranged from 90 to 92%. Acceptable intra- and inter-day assay precision (<10% R.S.D.) and accuracy (<10% error) were observed over 0.05-50 microg/mL for all four matrices.  相似文献   

9.
目的 研究双歧杆菌四联活菌片联合乳果糖对乙肝肝硬化患者肠道菌群、肠黏膜屏障功能及肝功能水平的影响。方法 选择2017年12月至2018年12月于我院感染科住院治疗的乙肝肝硬化患者80例,按照随机数字表法分为试验组和对照组各40例。两组患者常规予以抗病毒及保肝治疗。试验组患者加用双歧杆菌四联活菌片和乳果糖口服液。对照组患者仅给予乳果糖口服液。检测患者肠道肠杆菌、肠球菌、双歧杆菌、乳杆菌和白假丝酵母数量。测定患者血清内毒素和血清二胺氧化酶水平及尿乳果糖/甘露醇(L/M)比值。记录两组患者丙氨酸氨基转移酶(ALT)、门冬氨酸氨基转移酶(AST)和总胆红素(TBIL)水平。观察治疗过程中的药物不良反应发生情况。结果 治疗4周后,试验组患者肠道肠球菌数量高于治疗1周后(18.41±2.92 vs 18.32±3.06),同时试验组患者肠道双歧杆菌数量与治疗前、治疗1周后以及对照组同时期相比差异也有统计学意义(均P0.05)。治疗1个月后,两组患者血清内毒素、血清二胺氧化酶和尿L/M以及AST、ALT、TBIL均较治疗前明显下降(均P<0.05),且试验组的下降幅度较对照组更大(均P<0.05)。两组患者均未曾发生不良反应。结论 双歧杆菌四联活菌片联合乳果糖可以改善乙肝肝硬化患者肝功能状态,调节失衡的肠道菌群,降低肠黏膜通透性,值得临床推广。  相似文献   

10.
Glyburide (glibenclamide, INN), a second generation sulfonylurea is widely used in the treatment of gestational diabetes mellitus (GDM). None of the previously reported analytical methods provide adequate sensitivity for the expected sub-nanogram/mL maternal and umbilical cord plasma concentrations of glyburide during pregnancy. We developed and validated a sensitive and low sample volume liquid chromatographic-mass spectrometric (LC-MS) method for simultaneous determination of glyburide (GLY) and its metabolite, 4-transhydroxy glyburide (M1) in human plasma (0.5 mL) or urine (0.1 mL). The limits of quantitation (LOQ) for GLY and M1 in plasma were 0.25 and 0.40 ng/mL, respectively whereas it was 1.06 ng/mL for M1 in urine. As measured by quality control samples, precision (% coefficient of variation) of the assay was <15% whereas the accuracy (% deviation from expected) ranged from -10.1 to 14.3%. We found that the GLY metabolite, M1 is excreted in the urine as the glucuronide-conjugate.  相似文献   

11.
高压液色谱用于肠通透性的测定   总被引:5,自引:0,他引:5  
目的 建立一种测定肠通透性的可靠方法。方法 以甘露醇和乳果糖为探测剂,用带脉冲电化学检测器的高压液相色谱仪对20例健康成人样品中的甘露醇和乳果糖进行检测。结果 20个样品中的甘露醇和乳果糖均被检测到,其最低质量浓度分别为0.2028mg/L和0.1930mg/L,回收率分别为98.2%和104.3%。结论 用带脉冲电化学检测器的高压液相色谱仪测定尿中的甘露醇和乳果糖是一种灵敏度高,特异性强,操作简  相似文献   

12.
We developed a capillary column gas chromatography (CCGC) method for the measurement of urinary sucralose (S) and three other sugar probes including, sucrose, lactulose (L) and mannitol (M) for use in in vivo studies of intestinal permeability. We compared the capillary method with a packed column gas chromatography (PCGC) method. We also investigated a possible role for sucralose as a probe for the measurement of whole gut permeability. Sample preparation was rapid and simple. The above four sugars were detected precisely, without interference. We measured intestinal permeability using 5- and 24-h urine collections in 14 healthy volunteers. The metabolism of sugars was evaluated by incubating the intestinal bacteria with an iso-osmolar mixture of mannitol, lactulose and sucralose at 37 degrees C for 19 h. Sugar concentrations and the pH of the mixture were monitored. The use of the CCGC method improved the detection of sucralose as compared to PCGC. The average coefficient of variation decreased from 15% to 4%. It also increased the sensitivity of detection by 200-2000-fold. The GC assay was linear between sucralose concentrations of 0.2 and 40 g/l (r=1.000). Intestinal bacteria metabolized lactulose and acidified the media but did not metabolize sucralose or mannitol. The new method for the measurement of urinary sucralose permits the simultaneous quantitation of sucrose, mannitol and lactulose, and is rapid, simple, sensitive, accurate and reproducible. Because neither S nor M is metabolized by intestinal bacteria, and because only a tiny fraction of either sugar is absorbed, this pair of sugar probes appears to be available for absorption throughout the GI tract. Thus, the 24-h urinary concentrations of S and M, or the urinary S/M ratio following an oral dose of a sugar mixture, might be good markers for whole gut permeability.  相似文献   

13.
Gadocoletate ion is a new paramagnetic intravascular contrast agent for magnetic resonance imaging (MRI). An high-performance liquid chromatographic method for assaying Gadocoletate ion in human plasma, urine and faecal samples is described. The analysis is based on the reversed-phase chromatographic separation of Gadocoletate ion from the endogenous components of the biological matrices and its detection during elution by ultraviolet light absorption at 200 nm. The selectivity of the method was satisfactory. The mean absolute recovery during the analytical sample preparation was greater than 87%. The precision, expressed as coefficient of variation (CV%) ranged from 0.29 to 5.90% and the accuracy, expressed as mean relative error (R.E.%) of the analytical method ranged from -3.7 to +7.1%. The detection limit in plasma and urine was 2.01 and 10.0 microg/mL (0.00203 and 0.0101 micromol/mL), respectively. The detection limit in homogenized faecal samples was 17.7 microg/g (0.0179 micromol/g). Stability studies were performed in human plasma and urine samples during the analytical cycle. Gadocoletate ion was shown to be stable in human plasma and in human urine when stored at about +4 degrees C for up 24 h, and after three freeze-thaw cycles. In addition, it was shown to be stable in samples of processed plasma and in diluted urine at about +4 degrees C for 48 h, and at room temperature for at least 24 h. As regards the long-term stability of Gadocoletate ion, the results of dedicated studies showed that Gadocoletate ion is stable in human plasma samples when stored at +4 degrees C for up to 30 days and at -80 degrees C for up to 90 days. Gadocoletate ion is stable in samples of human urine when stored at +4 degrees C for up to 30 days, and when stored at -20 degrees C and at -80 degrees C for up to 90 days. The method has been successfully validated in human plasma, urine and faeces and it has been shown to be precise, accurate and reliable.  相似文献   

14.
Fenske M 《Steroids》2006,71(11-12):1014-1018
The influence of water loading on urinary excretion of free cortisol and cortisone was investigated in healthy men. The results were as follows: water loading tests (intake of 0.25-1.5 L) in a single individual showed that a water load of 1.5 L reliably increased the excretion of urine, free cortisol and cortisone (p < 0.01). Regression analyses gave significant correlations of urine volume with free cortisol and free cortisone, and of free cortisol and free cortisone. Corresponding results were obtained when water loading tests were performed in males who ingested 1.5 L of water (n = 8): the excretion of urine, free cortisol and free cortisone were significantly augmented; correlated was urine volume with free cortisol and free cortisone, and free cortisol with free cortisone. In a third set of tests, volunteers collected one 5 h urine (10:00-15:00 h) after the intake of 3 x 0.1 or 0.5 L at 11:00, 12:00 and 14:00 h. Excretion of urine, free cortisol and free cortisone in males of the low water loading group (3 x 0.1 L) was 0.59 mL/min, and 8.2 or 15.0 microg/5 h; corresponding values in individuals ingesting 3 x 0.5 L of water were 1.5 mL/min (p < 0.01), 12.3 microg/5 h (p > 0.05) and 26.3 microg/5 h (p < 0.02). In summary, urinary free cortisol and cortisone excretion in healthy men depends on urine volume, especially during water diuresis. Thus, interpretation of free cortisol and especially of free cortisone excretion is only possible if subjects strictly control their fluid intake and if urine volume is considered an important pre-analytical parameter-otherwise, interpretation of urinary free cortisol results is difficult and of urinary free cortisone data remains tenuous at best.  相似文献   

15.
Indomethacin (IND) is the drug of choice for the closure of a patent ductus arteriosus (PDA) in neonates. This paper describes a simple, sensitive, accurate and precise microscale HPLC method suitable for the analysis of IND in plasma of premature neonates. Samples were prepared by plasma protein precipitation with acetonitrile containing the methyl ester of IND as the internal standard (IS). Chromatography was performed on a Hypersil C(18) column. The mobile phase of methanol, water and orthophosphoric acid (70:29.5:0.5, v/v, respectively), was delivered at 1.5 mL/min and monitored at 270 nm. IND and the IS were eluted at 2.9 and 4.3 min, respectively. Calibrations were linear (r>0.999) from 25 to 2500 microg/L. The inter- and intra-day assay imprecision was less than 4.3 % at 400-2000 microg/L, and less than 22.1% at 35 microg/L. Inaccuracy ranged from -6.0% to +1.0% from 35 to 2000 microg/L. The absolute recovery of IND over this range was 93.0-113.3%. The IS was stable for at least 36 h when added to plasma at ambient temperature. This method is suitable for pharmacokinetic studies of IND and has potential for monitoring therapy in infants with PDA when a target therapeutic range for IND has been validated.  相似文献   

16.
Cadmium (Cd) and lead (Pb) exposure of children and their mothers living in the vicinity of industrial sources (metal refining) was assessed by a cross-sectional study performed in 2000. Study areas were the highly industrialized city of Duisburg and a rural area of North Rhine Westphalia, Germany. Exposure to ambient air concentrations of Cd and Pb was calculated from a Lagrange dispersion model using data sets from ambient air quality measurements. Cd in blood and urine and Pb in blood were measured by AAS. Mean age (years) was 6.4 (range 5.5-7.7) for children (n = 238) and 36 (range 23-48) for mothers (n = 213). A total of 49% of the children were males. Factors suspected to influence metal levels in blood or urine were obtained by questionnaire. Individual ambient Cd and Pb levels according to the home address ranged from 0.5 ng/m3 (Cd) and 0.03 microg/m3 (Pb) (rural area) up to 31.2 ng/m3 (Cd) and 0.73 microg/m3 (Pb) (industrialized area). Cd levels (geometric mean) in blood (0.13 and 0.10 microg/L) and urine (both areas 0.09 microg/L) of children did not differ between the two areas. Cd levels in blood and urine of mothers from the industrialized area were higher (blood 0.39 microg/L, urine 0.28 microg/L) than in those from the rural area (blood 0.25 microg/L, urine 0.25 microg/L). Pb levels in the blood of children from the industrialized area were higher (31 microg/L) than in those from the rural area (21 microg/L). Pb levels in the blood of mothers did not differ between the two areas (both 24 microg/L). Pb levels in blood showed a significant association between child and mother (n = 192; r = 0.26, p < 0.001). This did not apply for Cd in blood or urine. Regression analysis clearly revealed that Pb levels in ambient air were associated with Pb in the blood of children. Minor associations were also found between Cd in air and Cd in the blood of mothers and between Cd in air and urine of mothers.  相似文献   

17.
Comparative studies were carried out on the galactosyltransferase activity in ascites lymphoma cells isolated from mouse with ascitic lymphoma Ly/Ya, in these cells grown in vitro (24 hrs culture), in ascitic fluid and culture medium. The effect of varying amounts of UDP-galactose on transfer rate of galactose to ovomucoid by the cell enzyme (ascitic and cultured lymphoma cells) and by the soluble enzyme (ascitic fluid and culture medium) was studied. The activity of the enzyme in the cell culture medium was 2.5-fold higher than that in ascitic fluid. The apparent Km values for UDP-galactose of the enzyme from both kinds of cells and from the two fluids was 7.14 x 10(-7) M. At saturating concentrations of donor substrate, V values for the cells and culture medium was 765 pmoles/10(6) cells/h and 180 pmoles/10(6) cells/h for the ascitic fluid.  相似文献   

18.
A reliable liquid chromatography/tandem mass spectrometry has been developed for simultaneous evaluation of the activities of five cytochrome P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) in rat plasma and urine. The five-specific probe substrates/metabolites include phenacetin/paracetamol (CYP1A2), tolbutamide/4-hydroxytolbutamide and carboxytolbutamide (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), dextromethorphan/dextrorphan (CYP2D6), and midazolam/1'-hydroxymidazolam (CYP3A). Internal standards were brodimoprim (for phenacetin, paracetamol, midazolam and 1'-hydroxymidazolam), ofloxacin (for 4'-hydroxymephenytoin, dextromethorphan and dextrorphan) and meloxicam (for tolbutamide, 4-hydroxytolbutamide and carboxytolbutamide). Sample preparation was conducted with solid-phase extraction using Oasis HLB cartridges. The chromatography was performed using a C(18) column with mobile phase consisting of methanol/0.1% formic acid in 20 mM ammonium formate (75:25). The triple-quadrupole mass spectrometric detection was operated in both positive mode (for phenacetin, paracetamol, midazolam, 1'-hydroxymidazolam, brodimoprim, 4'-hydroxymephenytoin, dextromethorphan, dextrorphan and ofloxacin) and negative mode (for tolbutamide, 4-hydroxytolbutamide, carboxytolbutamide and meloxicam). Multiple reaction monitoring mode was used for data acquisition. Calibration ranges in plasma were 2.5-2500 ng/mL for phenacetin, 2.5-2500 ng/mL for paracetamol, 5-500 ng/mL for midazolam, and 0.5-500 ng/mL for 1'-hydroxymidazolam. In urine calibration ranges were 5-1000 ng/mL for dextromethorphan, 0.05-10 microg/mL for dextrorphan and 4'-hydroxymephenytoin, 5-2000 ng/mL for tolbutamide, 0.05-20 microg/mL for 4-hydroxytolbutamide and 0.025-10 microg/mL for carboxytolbutamide. The intra- and inter-day precision were 4.3-12.4% and 1.5-14.8%, respectively for all of the above analytes. The intra- and inter-day accuracy ranged from -9.1 to 8.3% and -10 to 9.2%, respectively for all of the above analytes. The lower limits of quantification were 2.5 ng/mL for phenacetin and paracetamol, 5 ng/mL for midazolam, 0.5 ng/mL for 1'-hydroxymidazolam, 5 ng/mL for dextromethorphan, 50 ng/mL for dextrorphan and 4'-hydroxymephenytoin, 5 ng/mL for tolbutamide, 50 ng/mL for 4-hydroxytolbutamide and 25 ng/mL for carboxytolbutamide. All the analytes were evaluated for short-term (24 h, room temperature), long-term (3 months, -20 degrees C), three freeze-thaw cycles and autosampler (24 h, 4 degrees C) stability. The stability of urine samples was also prepared with and without beta-glucuronidase incubation (37 degrees C) and measured comparatively. No significant loss of the analytes was observed at any of the investigated conditions. The current method provides a robust and reliable analytical tool for the above five-probe drug cocktail, and has been successfully verified with known CYP inducers.  相似文献   

19.
A fast and sensitive approach for determination of erythromycin in rat plasma was described. The method used capillary electrophoresis coupled with end-column electrochemiluminescence (ECL) detection of Ru(bpy)(3)(2+). The separation column used had an inner diameter of 75 microm. The running buffer was 15 mmol/L sodium phosphate (pH=7.5). The solution in the detection cell was 50 mmol/L sodium phosphate (pH=8.0) and 5 mmol/L Ru(bpy)(3)(2+). ECL intensity varied linearly with erythromycin concentration from 1.0 ng/mL to 10 microg/mL. The detection limit (S/N=3) was 0.35 ng/mL. The relative standard deviations, of ECL intensity and migration time for eight consecutive injections of 1.0 microg/mL erythromycin (n=8), were 1.3% and 1.8%, respectively. The method was successfully applied to erythromycin determination in rat plasma. The recovery ranged from 92.5 to 97.5%.  相似文献   

20.
Results of the simultaneous determination of the structurally different antibiotics cefazoline, cefotiame, cefuroxime, chloramphenicol, ciprofloxacin, ofloxacin, sulfamethoxazole and trimethoprim from environmental and biological monitoring using high-performance liquid chromatography with UV, single mass and tandem mass spectrometry were compared. For sample enrichment and clean-up a SPE method using bakerbond C18 cartridges was developed. Mean recovery rates were above 70%. Because of the complex urine matrix, only the wipe samples could be analyzed by UV-detection. However, UV-detection and single MS-detection are useful for control measurements after spillage, e.g. (LOD=1-2 ng/cm(2)). Samples from biological monitoring of occupational uptake should be analyzed by LC-MS/MS. The limits of detection (LOD) in urine ranged from 0.4 to 70 microg/L for LC-MS and 0.01 to 0.9 microg/L for LC-MS/MS detection. The limits of detection in wipe samples ranged from 0.003 to 0.13 ng/cm(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号