首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactic acid, originated from degradation of biomaterials, cell cultures, and so on, would be a toxic compound in acute states. The present study was undertaken to ascertain whether the proliferation, metabolism, and differentiation of rabbit mesenchymal stem cells (rMSCs) were affected by additional lactic acid. Furthermore, this study aimed to determine whether this influence was due to decreasing pH, increasing osmotic pressure, or chemical action of lactate ion. It was shown that the proliferation and metabolism of MSCs were inhibited by decreasing pH or increasing lactate. However, when osmolarity was adjusted to the same level as that of sodium lactate using sodium chloride, cell proliferation was little affected by osmotic pressure. We also concluded that colony-forming potential and osteogenic differentiation capacity were significantly depressed by decreasing pH or increasing lactate. As was shown, this inhibition of lactate was not only due to osmotic pressure, but also mainly due to chemical action of lactate ion. However, we observed that acidifying extracellular medium and lactate ion promoted the retention of adipogenic differentiation potential of MSCs during in vitro expansion, which suggested that growth arrest and the decrease of osteogenic differentiation potential did not affect the adipogenic conversion of MSCs.  相似文献   

2.
The stabilization of optimum pH for cells can cause a higher erythropoietin (EPO) production rate and a good growth rate with the prolonged culture span in recombinant Chinese hamster ovary (r-CHO) cells. Our strategy for stabilizing the optimum pH in this study is to reduce the lactate production by adding sodium lactate to a culture medium. When 40 mM sodium lactate was added, a specific growth rate was decreased by approximately 22% as compared with the control culture. However the culture longevity was extended to 187 h, and more than a 2.7-fold increase in a final accumulated EPO concentration was obtained at 40 mM of sodium lactate. On the condition that caused the high production of EPO, a specific glucose consumption rate and lactate production rate decreased by 23.3 and 52%, respectively. Activity of lactate dehydrogenase (LDH) in r-CHO cells increased and catalyzed the oxidation of lactate to pyruvate, together with the reverse reaction, at the addition of 40 mM sodium lactate. The addition of 40 mM sodium lactate caused the positive effects on a cell growth and an EPO production in the absence of carbon dioxide gas as well as in the presence of carbon dioxide gas by reducing the accumulation of lactate.  相似文献   

3.
AIMS: Combinations of sodium chloride and acid are frequently used to inhibit growth of spoilage and pathogenic bacteria in food. The influence of differing sodium chloride, lactate and pH values on the growth of stressed and unstressed cells of a non-toxigenic strain of Escherichia coli O157:H7 was studied. METHODS AND RESULTS: At pH 5.5 or 6.0, there was little or no effect on the growth rate in the presence of lactate and/or sodium chloride, but the lag times were longer as the lactate concentration increased. At pH 5.0, in the absence of sodium chloride, increasing the lactate concentration increased the growth rate and the lag time; no growth occurred in the presence of 1.5 g 100 g(-1) lactate. In the presence of 4-6 g 100 g(-1) sodium chloride, growth occurred at 1.5 g 100 g(-1) lactate. The growth rate was similar at all lactate concentrations. CONCLUSION: The results demonstrate that the presence of sodium chloride promoted growth of E. coli O157:H7, especially under stressful conditions of low pH. Significance and Impact of the Study: These findings could have implications for the use of acid and sodium chloride as a preservation treatment for the inhibition of E. coli O157:H7 in food.  相似文献   

4.
The influence of ammonia and lactate on cell growth, metabolic, and antibody production rates was investigated for murine hybridoma cell line 163.4G5.3 during batch culture. The specific growth rate was reduced by one-half in the presence of an initial ammonia concentration of 4 mM. Increasing ammonia levels accelerated glucose and glutamine consumption, decreased ammonia yield from glutamine, and increased alanine yield from glutamine. Although the amount of antibody produced decreased with increasing ammonia concentration, the specific antibody productivity remained relatively constant around a value of 0.22 pg/cell-h. The specific growth rate was reduced by one-half at an initial lactate concentration of 55 mM. Although specific glucose and glutamine uptake rates were increased at high lacatate concentration, they showed a decrease after making corrections for medium osmolarity. The yield coefficient of lactate from glucose decreased at high lactate concentrations. A similar decrease was observed for the ammonia yield coefficient from glutamine. At elevated lactate concentrations, specific antibody productivities increased, possibly due to the increase in medium osmolarity. The specific oxygen uptake rate was insensitive to ammonia and lactate concentrations. Addition of ammonia and lactate increased the calculated metabolic energy production of the cells. At high ammonia and lactate, the contribution of glycolysis to total energy production increased. Decreasing external pH and increasing ammonia concentrations caused cytoplasmic acidification. Effect of lactate on intracellular pH was insignificant, whereas increasing osmolarity caused cytoplasmic alkalinization.  相似文献   

5.
The time length required for the adaptation of AFP-27 hybridoma cells to high osmotic pressure and the effect of a gradual increase of osmotic pressure on monoclonal antibody production were investigated. When the cells were subjected to an increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg- 1, the intracellular content of osmoprotective free amino acids reached a maximum level 6 h after the osmotic pressure was increased to 366 mOsmol kg-1. The same time period of 6 h incubation at 366 mOsmol kg-1 was required to obtain a high growth rate of AFP-27 cells at 440 mOsmol kg-1 when the cells were subjected to a two-step increase of osmotic pressure from 300 mOsmol kg-1 to 366 mOsmol kg-1 and then to 440 mOsmol kg-1. The time length for the physiological adaptation of the cells to 366 mOsmol kg-1 was consequently estimated to be 6 h. Osmotic pressure during batch cultivation was gradually increased from 300 mOsmol kg-1 to 400 mOsmol kg-1 with an adaptation time of at least 6 h. The specific growth rates following a gradual increase of osmotic pressure were higher than those at a constant osmotic pressure of 400 mOsmol kg-1, while the specific monoclonal antibody production rate increased with the increase in the mean osmotic pressure. As a result, the cells grown under a gradual increase of osmotic pressure produced higher amounts of monoclonal antibodies than did those grown under constant osmotic pressure.  相似文献   

6.
Specific erythritol production rate by Trigonopsis variabilis increased from 0.09 to 0.19 g/g-day by varying the osmotic pressure from 1.3 to 3.9 kPa in glucose medium, but the specific growth rate decreased from 0.28 to 0.13 h -1 . Therefore, osmotic pressure was adjusted to 1.4 kPa during growth phase and to 3.7 kPa during production phase in a two-stage fermentation. Erythritol reached 46 g/ l in such a system and was twice that obtained in one-stage fermentation.  相似文献   

7.
《Process Biochemistry》2014,49(12):2049-2054
The effects of Ca(OH)2, NH4OH and NaOH as neutralizing agents on the efficiency of l-lactic acid production by Lactobacillus paracasei were investigated in this study. Fermentation performance with Ca(OH)2 was superior to NH4OH and NaOH because it had the highest oxygen transfer rate (OTR) and lowest environmental osmotic pressure. Much smaller bubbles were generated using a calcium lactate solution compared with those generated using ammonium lactate and sodium lactate solutions, indicating that Ca(OH)2 had the highest OTR. Moreover, experiments demonstrated that ammonium lactate and sodium lactate caused more severe osmotic stress on cell growth than calcium lactate. In conclusion, the effects of neutralizing agents on l-lactic acid production efficiency could be ascribed to the contribution of lactates to OTR and environmental osmotic stress.  相似文献   

8.
Substrate and product inhibition of hydrogen production during sucrose fermentation by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was studied. The inhibition kinetics were analyzed with a noncompetitive, nonlinear inhibition model. Hydrogen was the most severe inhibitor when allowed to accumulate in the culture. Concentrations of 5-10 mM H(2) in the gas phase (identical with partial hydrogen pressure (pH(2)) of (1-2) x 10(4) Pa) initiated a metabolic shift to lactate formation. The extent of inhibition by hydrogen was dependent on the density of the culture. The highest tolerance for hydrogen was found at low volumetric hydrogen production rates, as occurred in cultures with low cell densities. Under those conditions the critical hydrogen concentration in the gas phase was 27.7 mM H(2) (identical with pH(2) of 5.6 x 10(4) Pa); above this value hydrogen production ceased completely. With an efficient removal of hydrogen sucrose fermentation was mainly inhibited by sodium acetate. The critical concentrations of sucrose and acetate, at which growth and hydrogen production was completely inhibited (at neutral pH and 70 degrees C), were 292 and 365 mM, respectively. Inorganic salts, such as sodium chloride, mimicked the effect of sodium acetate, implying that ionic strength was responsible for inhibition. Undissociated acetate did not contribute to inhibition of cultures at neutral or slightly acidic pH. Exposure of exponentially growing cultures to concentrations of sodium acetate or sodium chloride higher than ca. 175 mM caused cell lysis, probably due to activation of autolysins.  相似文献   

9.
进化代谢选育高渗透压耐受型产琥珀酸大肠杆菌   总被引:1,自引:0,他引:1  
在以碳酸钠为酸中和剂的大肠杆菌两阶段发酵产琥珀酸的过程中,由于Na+的积累造成发酵体系中渗透压的提高,严重抑制了琥珀酸的产物浓度。为了增强大肠杆菌对渗透压的耐受性,考察了利用进化代谢方法筛选高渗透压耐受型高产琥珀酸大肠杆菌菌株的可行性。进化代谢系统作为一种菌株突变装置,可以使菌体在连续培养条件下以最大的生长速率生长。以NaCl为渗透压调节剂,通过在连续培养装置中逐步提高NaCl浓度使菌体在高渗透压条件下快速生长,最终得到了一株高渗透压耐受型琥珀酸生产菌株Escherichia coli XB4。以碳酸钠为酸中和剂,在7 L发酵罐中利用Escherichia coli XB4进行两阶段发酵,厌氧培养60 h后,琥珀酸产量达到了69.5 g/L,琥珀酸生产速率达到了1.81 g/(L.h),分别比出发菌株提高了18.6%和20%。  相似文献   

10.
Lactate is one of the key waste metabolites of mammalian cell culture. High lactate levels are caused by high aerobic glycolysis, also known as the Warburg effect, and are usually associated with adverse culture performance. Therefore, reducing lactate accumulation has been an ongoing challenge in the cell culture development to improve growth, productivity, and process robustness. The pyruvate dehydrogenase complex (PDC) plays a crucial role for the fate of pyruvate, as it converts pyruvate to acetyl coenzyme A (acetyl‐CoA). The PDC activity can be indirectly increased by inhibiting the PDC inhibitor, pyruvate dehydrogenase kinase, using dichloroacetate (DCA), resulting in less pyruvate being available for lactate formation. Here, Chinese hamster ovary cells were cultivated either with 5 mM DCA or without DCA in various batch and fed‐batch bioreactor processes. In all cultures, DCA increased peak viable cell density (VCD), culture length and final antibody titer. The strongest effect was observed in a fed batch with media and glucose feeding in which peak VCD was increased by more than 50%, culture length was extended by more than 3 days, and the final antibody titer increased by more than twofold. In cultures with DCA, lactate production and glucose consumption during exponential growth were on average reduced by approximately 40% and 35%, respectively. Metabolic flux analysis showed reduced glycolytic fluxes, whereas fluxes in the tricarboxylic acid (TCA) cycle were not affected, suggesting that cultures with DCA use glucose more efficiently. In a proteomics analysis, only few proteins were identified as being differentially expressed, indicating that DCA acts on a posttranslational level. Antibody quality in terms of aggregation, charge variant, and glycosylation pattern was unaffected. Subsequent bioreactor experiments with sodium lactate and sodium chloride feeding indicated that lower osmolality, rather than lower lactate concentration itself, improved culture performance in DCA cultures. In conclusion, the addition of DCA to the cell culture improved culture performance and increased antibody titers without any disadvantages for cell‐specific productivity or antibody quality.  相似文献   

11.
The production of acetic acid by Clostridium thermoaceticum was studied by using batch fermentations. In a pH-controlled fermentation with sodium hydroxide (pH 6.9), this organism was able to produce 56 g of acetic acid per liter. On the other hand, when the pH was not controlled and was decreased during fermentation to 5.4, the maximum attainable acetic acid concentration was only 15.3 g/liter. To obtain a better understanding of the end product inhibition, various salts were tested to determine their effect on the growth rate of C. thermoaceticum. An inverse linear relationship between the growth rate and the final cell concentration to the sodium acetate concentration was found. By using different concentrations of externally added sodium salts, the relative growth inhibition caused by the anion was found to be in the order of acetate > chloride > sulfate. Various externally added cations of acetate were also examined with respect to their inhibitory effects on growth. The relative magnitude of inhibition on the growth rate was found to be ammonium > potassium > sodium. The combined results have shown that the undissociated acetic acid was much more inhibitory than the ionized acetate ion. Complete growth inhibition resulted when the undissociated acetic acid concentration was between 0.04 and 0.05 M and when the ionized acetate concentration was 0.8 M. Therefore, at low pH (below 6.0), undissociated acetic acid is responsible for growth inhibition, and at high pH (above 6.0), ionized acetate ion is responsible for growth inhibition.  相似文献   

12.
In animal cell cultivation, cell density and product concentration are often low due to the accumulation of toxic end-products such as ammonia and lactate and/or the depletion of essential nutrients. A hybridoma cell line (CRL-1606) was cultivated in T-flasks using a newly devised medium feeding strategy. The goals were to decrease ammonia and lactate formation by the design of an initial medium which would provide a starting environment to achieve optimal cell growth. This was followed by using a stoichiometric equation governing animal cell growth and then designing a supplemental medium for feeding strategy used to control the nutritional environment. The relationship between the stoichiometric demands for glutamine and nonessential amino acids was also studied. Through stoichiometric feeding, nutrient concentrations were controlled reasonably well. Consequently, the specific production rate of lactate was decreased by fourfold compared with conventional fed-batch culture and by 26-fold compared with conventional batch culture. The specific production rate of ammonia was decreased by tenfold compared with conventional fed-batch culture and by 50-fold compared with conventional batch culture. Most importantly, total cell density and monoclonal antibody concentration were increased by five- and tenfold respectively, compared with conventional batch culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   

13.
The release of atrial natriuretic polypeptides from spontaneously beating isolated rat atria was found to be sensitive to the increase in the concentration of sodium ion. The osmotic pressure, when produced by pharmacologically inactive choline chloride, also increased the release of ANP but substantially less than the sodium ion. Sodium ion and osmotic pressure stimulated the release of ANP in the hyperosmotic but not in the hypo-osmotic range. Neither stretch nor several neurotransmitters tested had any effects on the rate of ANP secretion.  相似文献   

14.
While much understanding has been achieved on the intracellular sodium and potassium concentrations of halophilic and halotolerant microorganisms and on their regulation, we know little on the metabolism of anions. Archaea of the family Halobacteriaceae contain molar concentrations of chloride, which is pumped into the cells by cotransport with sodium ions and/or using the light-driven primary chloride pump halorhodopsin. Most halophilic and halotolerant representatives of the bacterial domain contain low intracellular ion concentrations, with organic osmotic solutes providing osmotic balance. However, some species show a specific requirement for chloride. In Halobacillus halophilus certain functions, such as growth, endospore germination, motility and flagellar synthesis, and glycine betaine transport are chloride dependent. In this organism the expression of a large number of proteins is chloride regulated. Other moderately halophilic Bacteria such as Halomonas elongata do not show a specific demand for chloride. A very high requirement for chloride was demonstrated in two groups of Bacteria that accumulate inorganic salts intracellularly rather than using organic osmotic solutes: the anaerobic Halanaerobiales and the aerobic extremely halophilic Salinibacter ruber. It is thus becoming increasingly clear that chloride has specific functions in haloadaptation in different groups of halophilic microorganisms.  相似文献   

15.
The Malpighian tubules of Musca domestica secrete a fluid with a high concentration of potassium and low concentrations of sodium, calcium, magnesium and chloride compared with the isolating medium.Low secretion rates are produced by low medium potassium concentrations (< 7 mM), with low sodium concentrations (up to 5 mM) increasing secretion; higher potassium concentrations produce higher secretion rates whilst higher sodium concentrations have no further effect. Calcium and magnesium are essential for secretion.The rate of tubule secretion is inversely proportional to the osmotic pressure of the isolating medium and the osmotic pressure of the secreted fluid is slightly hyper-osmotic to the medium over a range of medium osmotic pressures.The metabolic inhibitors cyanide, iodoacetate and 2,4-dinitrophenol inhibit secretion: Cu2+ ions, arsenate and ouabain have no effect whereas ethacrynic acid abolishes secretion. 5-hydroxytryptamine, cycle AMP and theophylline have no effect on secretion. Sodium thiocyanate stimulates fluid secretion and increases the osmotic pressure and the concentration of sodium and chloride, but not potassium, in the secreted fluid.  相似文献   

16.
AIMS: to study and model the effect of sodium acetate, sodium lactate, potassium sorbate and combination of acid salts on the behaviour of Listeria monocytogenes in ground pork. METHODS AND RESULTS: Water activity (a(w)), pH and concentration of acid salt of the meat were adjusted. The behaviour of inoculated L. monocytogenes was studied and modelled according to physicochemical parameters values. Whatever the acid salt concentration used, we observed an inhibition of the growth of L. monocytogenes at pH 5.6 and a(w) 0.95. At pH 6.2 and a(w) 0.97, addition of 402 mmol l(-1) of sodium lactate or 60 mmol l(-1) of potassium sorbate was required to observe a slower growth. CONCLUSIONS: The inhibitory effect of acid salts was a function of pH, a(w), as well as of the nature and concentration of acid salts added. When one acid salt was added, the Augustin's model (Augustin et al. 2005) yielded generally correct predictions of either the survival or growth of L. monocytogenes. SIGNIFICANCE AND IMPACT OF THE STUDY: The suggested model can be used for risk assessment concerning L. monocytogenes in pork products.  相似文献   

17.
Osmolar Concentration and Fixation of Mycoplasmas   总被引:9,自引:9,他引:0       下载免费PDF全文
Broth cultures of Acholeplasma laidlawii were fixed with various concentrations of cacodylate-buffered glutaraldehyde. The shape and ultrastructure of the organisms varied with the osmolar concentration of the fixative. When the fixation mixture was hypertonic to the culture medium, ultrathin sections suggested that the cells had shrunk. Phosphate buffer, sodium chloride, or sucrose at comparable osmolaities had the same effect as sodium cacodylate. Glutaraldehyde itself also contributed to the osmotic effects of the fixation mixture but to a lesser extent than salts or sucrose, to which the cell membrane is impermeable. The osmolar concentration of the fixation mixture seemed of greater importance than pH in determining morphology. The mycoplasma was still susceptible to damage by high concentrations of cacodylate after fixation with 2.5% glutaraldehyde. The best procedure was to fix and wash the organism under conditions isotonic with the growth medium. These conditions were also satisfactory for a filamentous mycoplasma, Mycoplasma orale.  相似文献   

18.
Bacteriocin AS-48 showed high bactericidal activity for mesophilic and psychrotrophic strains of Bacillus cereus over a broad pH range. AS-48 inhibition of the enterotoxin-producing strain LWL1 was enhanced by sodium nitrite, sodium lactate, and sodium chloride. The latter also enhanced AS-48 activity against strain CECT 131. Bacterial growth and enterotoxin production by strain LWL1 were completely inhibited at bacteriocin concentrations of 7.5 microg/ml. At subinhibitory bacteriocin concentrations, enterotoxin production decreased markedly and sporulation was delayed. Intact spores were resistant to AS-48 but became gradually sensitive to AS-48 during the course of germination.  相似文献   

19.
Summary Following the addition of 0–75 mole N g–1 as ammonium chloride or ammonium sulphate to a sandy loam soil the nitrate formed was measured daily for a period of 15–17 days. The nitrate produced as a function of time was described using the Monod equation for microbial growth. An optimisation technique is described for obtaining, from the nitrification time course data, the maximum specific growth rate, the affinity constantant and an index limited by the concentration of ammonium in soil solution. Additions of more than 7.3 moles N g–1 soil as ammonium chloride were found to inhibit nitrification. The inhibition was interpreted as being caused by osmotic pressure or by chloride ion. A similar effect was not found with ammonium sulphate, because the salt concentration in the soil solution was restricted by the precipitation of calcium sulphate. The model developed was capable of accounting for nitrate production in the soil under non-steady state conditions of substrate concentrations and nitrifier biomass.  相似文献   

20.
Aerobic growth of Shewanella oneidensis MR-1 in minimal lactate medium was studied in batch cultivation. Acetate production was observed in the middle of the exponential growth phase and was enhanced when the dissolved oxygen (DO) concentration was low. Once the lactate was nearly exhausted, S. oneidensis MR-1 used the acetate produced during growth on lactate with a similar biomass yield as lactate. A two-substrate Monod model, with competitive and uncompetitive substrate inhibition, was devised to describe the dependence of biomass growth on lactate, acetate, and oxygen and the acetate growth inhibition across a broad range of concentrations. The parameters estimated for this model indicate interesting growth kinetics: lactate is converted to acetate stoichiometrically regardless of the DO concentration; cells grow well even at low DO levels, presumably due to a very low K(m) for oxygen; cells metabolize acetate (maximum specific growth rate, micro(max,A) of 0.28 h(-1)) as a single carbon source slower than they metabolize lactate (micro(max,L) of 0.47 h(-1)); and growth on acetate is self-inhibiting at a concentration greater than 10 mM. After estimating model parameters to describe growth and metabolism under six different nutrient conditions, the model was able to successfully estimate growth, oxygen and lactate consumption, and acetate production and consumption under entirely different growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号