首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method is presented for inferring evolutionary trees using nucleotide sequence data. The birth-death process is used as a model of speciation and extinction to specify the prior distribution of phylogenies and branching times. Nucleotide substitution is modeled by a continuous-time Markov process. Parameters of the branching model and the substitution model are estimated by maximum likelihood. The posterior probabilities of different phylogenies are calculated and the phylogeny with the highest posterior probability is chosen as the best estimate of the evolutionary relationship among species. We refer to this as the maximum posterior probability (MAP) tree. The posterior probability provides a natural measure of the reliability of the estimated phylogeny. Two example data sets are analyzed to infer the phylogenetic relationship of human, chimpanzee, gorilla, and orangutan. The best trees estimated by the new method are the same as those from the maximum likelihood analysis of separate topologies, but the posterior probabilities are quite different from the bootstrap proportions. The results of the method are found to be insensitive to changes in the rate parameter of the branching process. Correspondence to: Z. Yang  相似文献   

2.
The Rhagoletis pomonella species group has for decades been a focal point for debate over the possibility of sympatric speciation via host shift. Here I present the first extensive analysis of genetic (allozyme) divergence in the pomonella group, including all known taxa/populations except the allopatric Mexican population of R. pomonella. The phylogeny is estimated for all four described species (pomonella, mendax, zephyria, and cornivora) plus two undescribed species (the "flowering dogwood fly" and "sparkleberry fly"). Allozyme data for two additional populations of uncertain status (the "plum fly" and "mayhaw fly") are presented for the first time. Two data sets were analyzed, one for 17 loci from 77 populations and one for an additional 12 loci for a subset of 12 of these populations, with more than 4000 flies analyzed in total. Interspecific Nei unbiased genetic distances were generally small, being as low as 0.040. No fixed autapomorphic alleles beyond those already known for R. cornivora and R. zephyria were revealed in the new data, but several loci displaying frequency patterns useful in discriminating the species were discovered. The phylogenetic placement of the flowering dogwood fly differed depending on whether a molecular clock was assumed (UPGMA of Nei distance) or not assumed (frequency parsimony) for tree building. Other than this, however, trees under either assumption were essentially identical. The best tree was used to test the prediction of the sympatric speciation hypothesis that sister taxa should be broadly sympatric. This prediction was not rejected, but the best tree was weakly supported by bootstrap analysis. An unexpected finding was that R. pomonella populations representing ends of its strong latitudinal clines did not cluster together. One possible explanation is that the current R. pomonella is the result of a genetic fusion of two previously isolated, genetically differentiated populations. Such a fusion prior to the origin of the other species in the group could contribute to the poor resolution of the phylogeny.  相似文献   

3.
Knowles LL  Klimov PB 《Parasitology》2011,138(13):1750-1759
With the increased availability of multilocus sequence data, the lack of concordance of gene trees estimated for independent loci has focused attention on both the biological processes producing the discord and the methodologies used to estimate phylogenetic relationships. What has emerged is a suite of new analytical tools for phylogenetic inference--species tree approaches. In contrast to traditional phylogenetic methods that are stymied by the idiosyncrasies of gene trees, approaches for estimating species trees explicitly take into account the cause of discord among loci and, in the process, provides a direct estimate of phylogenetic history (i.e. the history of species divergence, not divergence of specific loci). We illustrate the utility of species tree estimates with an analysis of a diverse group of feather mites, the pinnatus species group (genus Proctophyllodes). Discord among four sequenced nuclear loci is consistent with theoretical expectations, given the short time separating speciation events (as evident by short internodes relative to terminal branch lengths in the trees). Nevertheless, many of the relationships are well resolved in a Bayesian estimate of the species tree; the analysis also highlights ambiguous aspects of the phylogeny that require additional loci. The broad utility of species tree approaches is discussed, and specifically, their application to groups with high speciation rates--a history of diversification with particular prevalence in host/parasite systems where species interactions can drive rapid diversification.  相似文献   

4.
Corroboration versus "Strongest Evidence"   总被引:1,自引:1,他引:0  
Background knowledge comprises accepted (well-corroborated) theories and results. Such theories are taken to be true for the purpose of interpreting evidence when assessing the corroboration of a hypothesis currently in question. Accordingly, background knowledge does not properly include rejected theories, false assumptions, or null models. In particular, regarding a model of random character distribution as "background knowledge" would rule out corroboration of phylogenetic hypotheses, since it would make character data irrelevant to inferring phylogeny. The presence of homoplasy is not grounds for treating characters as if they were randomly distributed, since characters can show strong phylogenetic structure even when they show homoplasy. This means that clique (compatibility) analysis is unjustified, since that method depends crucially on the assumption that characters showing any homoplasy at all are unrelated to phylogeny. Although likelihood does not measure corroboration, corroboration is closely connected to likelihood: for given evidence and background, the most likely trees are also best corroborated. Most parsimonious trees are best corroborated; the apparent clash between parsimony and likelihood is an artifact of the use of unrealistic models in most "maximum likelihood" methods.  相似文献   

5.
According to recent taxonomic reclassification, the primate family Hylobatidae contains four genera (Hoolock, Nomascus, Symphalangus, and Hylobates) and between 14 and 18 species, making it by far the most species-rich group of extant hominoids. Known as the "small apes", these small arboreal primates are distributed throughout Southeast, South and East Asia. Considerable uncertainty surrounds the phylogeny of extant hylobatids, particularly the relationships among the genera and the species within the Hylobates genus. In this paper we use parsimony, likelihood, and Bayesian methods to analyze a dataset containing nearly 14 kilobase pairs, which includes newly collected sequences from X-linked, Y-linked, and mitochondrial loci together with data from previous mitochondrial studies. Parsimony, likelihood, and Bayesian analyses largely failed to find a significant difference among phylogenies with any of the four genera as the most basal taxon. All analyses, however, support a tree with Hylobates and Symphalangus as most closely related genera. One strongly supported phylogenetic result within the Hylobates genus is that Hylobates pileatus is the most basal taxon. Multiple analyses failed to find significant support for any singular genus-level phylogeny. While it is natural to suspect that there might not be sufficient data for phylogenetic resolution (whenever that situation occurs), an alternative hypothesis relating to the nature of gibbon speciation exists. This lack of resolution may be the result of a rapid radiation or a sudden vicariance event of the hylobatid genera, and it is likely that a similarly rapid radiation occurred within the Hylobates genus. Additional molecular and paleontological evidence are necessary to better test among these, and other, hypotheses of hylobatid evolution.  相似文献   

6.
Likelihood methods for detecting temporal shifts in diversification rates   总被引:8,自引:0,他引:8  
Maximum likelihood is a potentially powerful approach for investigating the tempo of diversification using molecular phylogenetic data. Likelihood methods distinguish between rate-constant and rate-variable models of diversification by fitting birth-death models to phylogenetic data. Because model selection in this context is a test of the null hypothesis that diversification rates have been constant over time, strategies for selecting best-fit models must minimize Type I error rates while retaining power to detect rate variation when it is present. Here I examine model selection, parameter estimation, and power to reject the null hypothesis using likelihood models based on the birth-death process. The Akaike information criterion (AIC) has often been used to select among diversification models; however, I find that selecting models based on the lowest AIC score leads to a dramatic inflation of the Type I error rate. When appropriately corrected to reduce Type I error rates, the birth-death likelihood approach performs as well or better than the widely used gamma statistic, at least when diversification rates have shifted abruptly over time. Analyses of datasets simulated under a range of rate-variable diversification scenarios indicate that the birth-death likelihood method has much greater power to detect variation in diversification rates when extinction is present. Furthermore, this method appears to be the only approach available that can distinguish between a temporal increase in diversification rates and a rate-constant model with nonzero extinction. I illustrate use of the method by analyzing a published phylogeny for Australian agamid lizards.  相似文献   

7.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

8.
Random trees and random characters can be used in null models for testing phylogenetic hypothesis. We consider three interpretations of random trees: first, that trees are selected from the set of all possible trees with equal probability; second, that trees are formed by random speciation or coalescence (equivalent); and third, that trees are formed by a series of random partitions of the taxa. We consider two interpretations of random characters: first, that the number of taxa with each state is held constant, but the states are randomly reshuffled among the taxa; and second, that the probability each taxon is assigned a particular state is constant from one taxon to the next. Under null models representing various combinations of randomizations of trees and characters, exact recursion equations are given to calculate the probability distribution of the number of character state changes required by a phylogenetic tree. Possible applications of these probability distributions are discussed. They can be used, for example, to test for a panmictic population structure within a species or to test phylogenetic inertia in a character's evolution. Whether and how a null model incorporates tree randomness makes little difference to the probability distribution in many but not all circumstances. The null model's sense of character randomness appears more critical. The difficult issue of choosing a null model is discussed.  相似文献   

9.
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.  相似文献   

10.
11.
A method is proposed to conduct phylogenetic analyses of comparative or interspecific data when the true phylogeny is not known. Standard models of speciation and/or extinction or other methods are used to generate a sample from the set of all possible phylogenies for the measured species. The comparative data are then analyzed on each of the possible trees to obtain a distribution of possible evolutionary statistics for these data. The mean of this distribution is proposed as a reasonable estimate of the true evolutionary statistic of interest. Ways of obtaining confidence intervals and of developing hypothesis tests for this mean statistic are also proposed. The method can be used with any comparative method or phylogenetic analysis technique when phylogenetic relationships among species are not known or when branch lengths for a phylogeny in units of expected character change (as required by most methods) are not available. Computer programs to conduct the analyses are available on request.  相似文献   

12.
It is now well known that incomplete lineage sorting can cause serious difficulties for phylogenetic inference, but little attention has been paid to methods that attempt to overcome these difficulties by explicitly considering the processes that produce them. Here we explore approaches to phylogenetic inference designed to consider retention and sorting of ancestral polymorphism. We examine how the reconstructability of a species (or population) phylogeny is affected by (a) the number of loci used to estimate the phylogeny and (b) the number of individuals sampled per species. Even in difficult cases with considerable incomplete lineage sorting (times between divergences less than 1 N(e) generations), we found the reconstructed species trees matched the "true" species trees in at least three out of five partitions, as long as a reasonable number of individuals per species were sampled. We also studied the tradeoff between sampling more loci versus more individuals. Although increasing the number of loci gives more accurate trees for a given sampling effort with deeper species trees (e.g., total depth of 10 N(e) generations), sampling more individuals often gives better results than sampling more loci with shallower species trees (e.g., depth = 1 N(e)). Taken together, these results demonstrate that gene sequences retain enough signal to achieve an accurate estimate of phylogeny despite widespread incomplete lineage sorting. Continued improvement in our methods to reconstruct phylogeny near the species level will require a shift to a compound model that considers not only nucleotide or character state substitutions, but also the population genetics processes of lineage sorting. [Coalescence; divergence; population; speciation.].  相似文献   

13.
Consensus on the evolutionary relationships of humans, chimpanzees, and gorillas has not been reached, despite the existence of a number of DNA sequence data sets relating to the phylogeny, partly because not all gene trees from these data sets agree. However, given the well-known phenomenon of gene tree-species tree mismatch, agreement among gene trees is not expected. A majority of gene trees from available DNA sequence data support one hypothesis, but is this evidence sufficient for statistical confidence in the majority hypothesis? All available DNA sequence data sets showing phylogenetic resolution among the hominoids are grouped according to genetic linkage of their corresponding genes to form independent data sets. Of the 14 independent data sets defined in this way, 11 support a human- chimpanzee clade, 2 support a chimpanzee-gorilla clade, and one supports a human-gorilla clade. The hypothesis of a trichotomous speciation event leading to Homo; Pan, and Gorilla can be firmly rejected on the basis of this data set distribution. The multiple-locus test (Wu 1991), which evaluates hypotheses using gene tree-species tree mismatch probabilities in a likelihood ratio test, favors the phylogeny with a Homo-Pan clade and rejects the other alternatives with a P value of 0.002. When the probabilities are modified to reflect effective population size differences among different types of genetic loci, the observed data set distribution is even more likely under the Homo-Pan clade hypothesis. Maximum-likelihood estimates for the time between successive hominoid divergences are in the range of 300,000-2,800,000 years, based on a reasonable range of estimates for long-term hominoid effective population size and for generation time. The implication of the multiple-locus test is that existing DNA sequence data sets provide overwhelming and sufficient support for a human-chimpanzee clade: no additional DNA data sets need to be generated for the purpose of estimating hominoid phylogeny. Because DNA hybridization evidence (Caccone and Powell 1989) also supports a Homo-Pan clade, the problem of hominoid phylogeny can be confidently considered solved.   相似文献   

14.
Aim We examine diversification in Caribbean alsophiine snakes and hypothesize that, given the ecological opportunity presented by colonization of the West Indies, alsophiines should show the signature of an early burst of diversification and associated low within‐clade ecological and morphological disparification. We also test whether changes in morphology and ecology are associated with changes in diversification rate, as trait‐dependent diversification is hypothesized to affect historical inferences of diversification and disparification. Finally, as replicated radiations are found across the West Indies in the anoles, we test for significant differences in ecological and morphological assemblages and rates among the major island groups. Location The West Indies. Methods A time‐calibrated phylogeny produced from six genes using relaxed clock methods in beast was constructed to estimate ancestral areas using Lagrange . Maximum body size and ecological niche were scored for all species in the phylogeny, and comparative phylogenetic methods in R using geiger , laser , ape and our own code were used to examine diversification through time, disparification and trait‐dependent diversification from this dated phylogeny. Results The pattern of species diversification did not differ significantly from the Yule model of diversification. Morphology and ecology fitted a Brownian and white noise model of diversification, respectively. Although not significantly different, morphological disparification was lower than the Brownian null model, whereas ecological disparification was significantly greater than the null. Trait‐dependent diversification analyses suggested that the constant null models provided the best fit to these data. There was no significant signal of rate variation among the major island groups for size, but moderate evidence for niche. Main conclusions Although ecological opportunity was similarly present for alsophiines as it was for anoles, the snakes fail to show an early burst of speciation. Potential reasons for this include the young age of the group, and staggered diversification due to waiting times between island colonization. In turn, ecological and morphological disparities do not necessarily follow predictable patterns related to species diversification. Thus, the presence of ecological opportunity alone is not necessarily sufficient to trigger replicated adaptive radiations in areas.  相似文献   

15.
If we adopt a statistical approach to systematics and recognize that phylogenies are estimated with error, then we can begin to explore statistically justified methods for testing a variety of comparative hypotheses, including those concerning the evolution of life-history characters and biogeography. In this paper I examine two biogeographic hypotheses concerning the rodent genus Microtus. Like many comparative hypotheses, these can be phrased so that each predicts the existence of a particular monophyletic group. Neither of the predicted groups appear on the single best phylogeny as determined by both Dollo parsimony and maximum likelihood analysis of restriction site maps of mitochondrial DNA. Simulation studies, however, suggest that often the best phylogeny from a single data set has only a low probability of being exactly correct. We must also examine those trees that, while not the single best-supported tree, are not rejected by the data. If we find the best phylogeny for which a hypothesis is satisfied, then likelihood methods can be used to test whether that phylogeny is significantly worse then the best tree overall. If that tree can be rejected, then so can the hypothesis. Computational constraints limit the use of likelihood methods for searching among topologies, so parsimony is used as a data exploratory tool. One of the predicted groups cannot be rejected, even though the most parsimonious tree which includes that group requires 11 more steps than does the most parsimonious tree.  相似文献   

16.
Species level phylogenetic hypotheses can be used to explore patterns of divergence and speciation. In the tropics, speciation is commonly attributed to either vicariance, perhaps within climate-induced forest refugia, or ecological speciation caused by niche adaptation. Mimetic butterflies have been used to identify forest refugia as well as in studies of ecological speciation, so they are ideal for discriminating between these two models. The genus Ithomia contains 24 species of warningly colored mimetic butterflies found in South and Central America, and here we use a phylogenetic hypothesis based on seven genes for 23 species to investigate speciation in this group. The history of wing color pattern evolution in the genus was reconstructed using both parsimony and likelihood. The ancestral pattern for the group was almost certainly a transparent butterfly, and there is strong evidence for convergent evolution due to mimicry. A punctuationist model of pattern evolution was a significantly better fit to the data than a gradualist model, demonstrating that pattern changes above the species level were associated with cladogenesis and supporting a model of ecological speciation driven by mimicry adaptation. However, there was only one case of sister species unambiguously differing in pattern, suggesting that some recent speciation events have occurred without pattern shifts. The pattern of geographic overlap between clades over time shows that closely related species are mostly sympatric or, in one case, parapatric. This is consistent with modes of speciation with ongoing gene flow, although rapid range changes following allopatric speciation could give a similar pattern. Patterns of lineage accumulation through time differed significantly from that expected at random, and show that most of the extant species were present by the beginning of the Pleistocene at the latest. Hence Pleistocene refugia are unlikely to have played a major role in Ithomia diversification.  相似文献   

17.
Understanding the processes and conditions under which populations diverge to give rise to distinct species is a central question in evolutionary biology. Since recently diverged populations have high levels of shared polymorphisms, it is challenging to distinguish between recent divergence with no (or very low) inter-population gene flow and older splitting events with subsequent gene flow. Recently published methods to infer speciation parameters under the isolation-migration framework are based on summarizing polymorphism data at multiple loci in two species using the joint site-frequency spectrum (JSFS). We have developed two improvements of these methods based on a more extensive use of the JSFS classes of polymorphisms for species with high intra-locus recombination rates. First, using a likelihood based method, we demonstrate that taking into account low-frequency polymorphisms shared between species significantly improves the joint estimation of the divergence time and gene flow between species. Second, we introduce a local linear regression algorithm that considerably reduces the computational time and allows for the estimation of unequal rates of gene flow between species. We also investigate which summary statistics from the JSFS allow the greatest estimation accuracy for divergence time and migration rates for low (around 10) and high (around 100) numbers of loci. Focusing on cases with low numbers of loci and high intra-locus recombination rates we show that our methods for the estimation of divergence time and migration rates are more precise than existing approaches.  相似文献   

18.
Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite lack of any diagnostic morphological characters. A phylogenetics analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetics analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nu DNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable.  相似文献   

19.
Rapid speciation can occur on ecological time scales and interfere with ecological processes, resulting in species distribution patterns that are difficult to reconcile with ecological theory. The haplochromine cichlids in East African lakes are an extreme example of rapid speciation. We analyse the causes of their high speciation rates. Various studies have identified disruptive sexual selection acting on colour polymorphisms that might cause sympatric speciation. Using data on geographical distribution, colouration and relatedness from 41 species endemic to Lake Victoria, we test predictions from this hypothesis. Plotting numbers of pairs of closely related species against the amount of distributional overlap between the species reveals a bimodal distribution with modes on allopatric and sympatric. The proportion of sister species pairs that are heteromorphic for the traits under disruptive selection is higher in sympatry than in allopatry. These data support the hypothesis that disruptive sexual selection on colour polymorphisms has caused sympatric speciation and help to explain the rapid radiation of haplochromine species flocks.  相似文献   

20.
Reconstruction of phylogenetic relationships among recently diverged species is complicated by three general problems: segregation of polymorphisms that pre-date species divergence, gene flow during and after speciation, and intra-locus recombination. In light of these difficulties, the Y chromosome offers several important advantages over other genomic regions as a source of phylogenetic information. These advantages include the absence of recombination, rapid coalescence, and reduced opportunity for interspecific introgression due to hybrid male sterility. In this report, we test the phylogenetic utility of Y-chromosomal sequences in two groups of closely related and partially inter-fertile Drosophila species. In the D. bipectinata species complex, Y-chromosomal loci unambiguously recover the phylogeny most consistent with previous multi-locus analysis and with reproductive relationships, and show no evidence of either post-speciation gene flow or persisting ancestral polymorphisms. In the D. simulans species complex, the situation is complicated by the duplication of at least one Y-linked gene region, followed by intrachromosomal recombination between the duplicate genes that scrambles their genealogy. We suggest that Y-chromosomal sequences are a useful tool for resolving phylogenetic relationships among recently diverged species, especially in male-heterogametic organisms that conform to Haldane's rule. However, duplication of Y-linked genes may not be uncommon, and special care should be taken to distinguish between orthologous and paralogous sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号