首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Baboons possess Lp[a] that is similar to human Lp[a], including the presence of the unique protein, apo[a]. Baboon apo[a] occurred in at least nine isoforms distinguishable by size. Isoforms were resolved by 3-12% polyacrylamide gradient gel electrophoretic separation of serum proteins, and were detected with baboon apo[a]-specific antibodies. Thirty one different apo[a] isoform phenotypes were detected in a population of 165 unrelated baboons. Identical isoform phenotypes were observed in different samples from individual baboons, and isoform phenotypes were unaffected by changes in diet. In one experiment, 16 baboons were fed a series of five diets differing in amounts of cholesterol and saturated or unsaturated fats. There was no significant effect of diet on serum Lp[a] levels. In another group of baboons (n = 70) controlled for age and dietary history, enrichment of the diet with cholesterol and saturated fat caused a small, but significant (P less than 0.005), increase (means = 0.6 mg/dl) in serum Lp[a] concentration. Analysis of two large sire families suggested that apo[a] isoform patterns and serum Lp[a] concentrations were inherited. Putative parental alleles responsible for specific isoform bands appeared to segregate randomly. Heritability (h2) of serum Lp[a] concentration was estimated to be 0.95 +/- 0.04. We conclude that apo[a] isoform phenotypes and serum Lp[a] concentrations are inherited, and that Lp[a] concentrations are only slightly influenced by diet.  相似文献   

3.
We have developed a sensitve, high-resolution method for the analysis of the apolipoprotein(a) [apo(a)] isoforms using sodium dodecyl sulfate (SDS)-agarose/ gradient polyacrylamide gel electrophoresis. In an analysis of the genetic polymorphism of apo(a) isoforms and their relationship with plasma lipoprotein(a) [Lp(a)] levels in Japanese and Chinese, this method identified 25 different apo(a) isoforms and detected one or two apo(a) isoforms in more than 99.5% of the individuals tested. The apparent molecular weights of the apo(a) isoforms ranged from 370 kDa to 950 kDa, and 22 of the 25 different apo(a) isoforns had a higher molecular weight than of apo B-100. Studies on Japanese families confirmed the autosomal codominant segregation of apo(a) isoforms and the existence of a null allele at the apo(a) locus. The observed frequency distribution of apo(a) isoform phenotypes fit the expectations of the Hardy-Weinberg equilibrium in both the Japanese and Chinese populations. Our data indicate the existence of at least 26 alleles, including a null allele, at the apo(a) locus. The frequency distribution patterns of the apo(a) isoform alleles in Japanese and Chinese were similar to each other and also similar to that of apo(a) gene sizes reported in Caucasian American individuals. The average heterozygosity at the apo(a) locus was 92% in Japanese and 93% in Chinese. A highly significant inverse correlation was observed between plasma Lp(a) levels and the size of apo(a) isoforms in both the Japanese (r=-0.677, P=0.0001) and the Chinese (r=-0.703, P=0.0001). A highly skewed distribution of Lp(a) concentrations towards lower levels in the Japanese population may be explained by high frequencies of alleles encoding large apo(a) isoforms and the null allele.  相似文献   

4.
Apolipoprotein a, is a high molecular weight glycoproteic component of Lp(a), a molecule associated with coronary arterial disease. Apo(a) exhibits considerable size heterogeneity due to variable repetitions of the carbohydrate-containing structural unit, termed kringle. There are five different kringle forms and 10 different kringle 4 types. Apo(a) polymorphism and molecular weight depend on the number of copies of kringle 4 type 2.

In this paper we describe a modified 3.75% and 6% discontinuous polyacrylamide gel system and Western-blot technique that shortness the assay time and improves the identification of apo(a) isoforms with a theoretical error of less than 1 kringle. The assay uses a standard curve prepared with five different recombinant apo(a) molecules, detected up to 50 ng of protein in Lp(a), showed a maximal resolution of 2 kringles and, with the use of third degree polynominal regression analysis, had an error of 0.01275. The inter-assay coefficient of variation was 1.7, 2, and 1.4 for the 14 K, 18 K, and 22 K phenotypes, whereas the intra-assay coefficient of variation was 0.32%, 0.18%, and 0.17%, respectively.

It is possible that this modified method will diminish the number of putative null alleles so far detected in various studies, but most of all, we are certain that it can be of use in epidemiological studies due to its ease of use, speed, low cost, and enhanced number of samples that can be tested. Abbreviations: Lp(a) = lipoprotein (a); apo(a) = apolipoprotein (a)  相似文献   

5.
Coronary heart disease risk correlates directly with plasma concentrations of lipoprotein(a) (Lp(a)), a low-density lipoprotein-like particle distinguished by the presence of the glycoprotein apolipoprotein(a) (apo(a)), which is bound to apolipoprotein B-100 (apoB-100) by disulfide bridges. Size isoforms of apo(a) are inherited as Mendelian codominant traits and are associated with variations in the plasma concentration of lipoprotein(a). Plasminogen and apo(a) show striking protein sequence homology, and their genes both map to chromosome 6q26-27. In a large family with early coronary heart disease and high plasma concentrations of Lp(a), we found tight linkage between apo(a) size isoforms and a DNA polymorphism in the plasminogen gene; plasma concentrations of Lp(a) also appeared to be related to genetic variation at the apo(a) locus. We found free recombination between the same phenotype and alleles of the apoB DNA polymorphism. This suggests that apo(a) size isoforms and plasma lipoprotein(a) concentrations are each determined by genetic variation at the apo(a) locus.  相似文献   

6.
7.
Elevated levels of lipoprotein (a) [Lp(a)] are positively correlated with risk of cardiovascular disease and are thought to be a function of allelic variation in apo(a), the unique protein component of Lp(a). In this article we examine subspecies variation in Lp(a) levels and apo(a) isoforms in the baboon. Breeding populations of the five subspecies (Papio hamadryas hamadryas, P.h. cynocephalus, P.h. ursinus, P.h. papio, and P.h. anubis) of common long-tailed baboons are maintained at the Southwest Foundation for Biomedical Research. Serum samples were obtained from at least 20 unrelated animals of each subspecies. Twelve different size isoforms (including the null) of apo(a) were identified across the five subspecies. These isoforms act as alleles; a maximum likelihood method was used to obtain the allele frequencies. Significant differences in apo(a) isoform frequencies were found between subspecies (chi 2(44) = 163.10, p less than 0.0001). Quantitative levels of Lp(a) also differed among subspecies. We evaluated the correlation between genetic distances calculated using the quantitative Lp(a) levels and the apo(a) isoform data. Observed genetic relationships among the subspecies are consistent with the present-day geographic distribution and information from other marker protein systems. The findings indicate that the marker apo(a) may have great utility in both evolutionary and biomedical studies.  相似文献   

8.
We have investigated the influence of apo(a) genetics on the relationship between interleukin (IL)-6, and lipoprotein (a) [Lp(a)] levels in 154 patients with monoclonal gammopathy and 189 healthy subjects. No significant differences in Lp(a) levels and distribution of subjects with different sizes of apo(a) isoforms were found between patients and healthy controls. Relationship between IL-6 and Lp(a) levels was strongly dependent on the size of apo(a) isoforms. In patients with high-size apo(a) isoforms Lp(a) levels positively correlated (r=0.475, P=0.0007) to IL-6 concentrations, whereas no correlation was found in patients with low apo(a) isoforms. Our present finding may provide a plausible explanation for the contradictory findings about the acute phase protein nature of Lp(a).  相似文献   

9.
Apolipoprotein [a] (apo[a]) gene size is a major predictor of lipoprotein [a] level. To determine genetic predictors of allele-specific apo[a] levels beyond gene size, we evaluated the upstream C/T and pentanucleotide repeat (PNR) polymorphisms. We determined apo[a] sizes, allele-specific apo[a] levels, and C/T and PNR in 215 Caucasians and 139 African Americans. For Caucasians, apo[a] size affected allele-specific levels substantially greater in subjects with apo[a] < 24 K4; for African Americans, the size effect was smaller than in Caucasians, <24 K4, but did not decrease at higher repeats. In both groups, the level decreased with increasing size of the other allele. Controlling for apo[a] sizes, PNR decreased allele-specific apo[a] levels in Caucasians with increasing PNR > 8. In a multiple regression model, apo[a] allele size and size and expression of the other apo[a] allele (and PNR > 8 for Caucasians) significantly predicted allele-specific apo[a] levels. For a common PNR 8 allele, predicted values were similar in the two ethnicities for small size apo[a]. Allele-specific apo[a] levels were influenced by the other allele size and expression. Observed differences between Caucasians and African Americans in allele-specific apo[a] levels were explained for small apo[a] sizes by the other allele size and PNR; the ethnicity differences remain unexplained for larger sizes.  相似文献   

10.
The risk factor, Lipoprotein(a), [(Lp(a)], has been measured in numerous clinical studies by a variety of immunochemical assay methods. It is becoming apparent that for many of these assays antibody specificity towards the apolipoprotein(a) [apo(a)] repetitive component [the kringle 4 - type 2 repeats] and apo(a) size heterogeneity can significantly affect the accuracy of serum Lp(a) measurements. To address this issue, we investigated whether our current in house Lp(a) [Mercodia] assay showed such bias compared to a recently available assay [Apo-Tek], claiming to possess superior capability for isoform-independent measurement of Lp(a). Levels of Lipoprotein(a) by both Apo-Tek and Mercodia assays correlated inversely with apo(a) isoform sizes. No significant differences were observed between assays in ranges of Lp(a) concentration within each isoform group. The Mercodia assay exhibited similar isoform-independent behaviour to that of Apo-Tek for e quantitation of serum Lipoprotein(a). Essentially identical results were obtained by the two methods, suggesting that Mercodia assay's capture monoclonal antibody also (as is the case for Apo-Tek) does not recognize the kringle 4-type 2 repetitive domain of apo(a). Correlation of Lp(a) concentrations in patient specimens between Apo-Tek and Mercodia assays showed good agreement, although an overall higher degree of imprecision and non-linearity was noted for the Apo-Tek procedure. A change-over to the Apo-Tek assay would therefore not improve on our current assessment of risk contribution from Lp(a) for atherosclerotic vascular disease in individuals with measurable levels of circulating Lipoprotein(a).  相似文献   

11.
The distributions of plasma lipoprotein(a), or Lp(a), levels differ significantly among ethnic groups. Individuals of African descent have a two- to threefold higher mean plasma level of Lp(a) than either Caucasians or Orientals. In Caucasians, variation in the plasma Lp(a) levels has been shown to be largely determined by sequence differences at the apo(a) locus, but little is known about either the genetic architecture of plasma Lp(a) levels in Africans or why they have higher levels of plasma Lp(a). In this paper we analyze the plasma Lp(a) levels of 257 sibling pairs from 49 independent African American families. The plasma Lp(a) levels were much more similar in the sibling pairs who inherited both apo(a) alleles identical by descent (IBD) (r = .85) than in those that shared one (r = .48) or no (r = .22) parental apo(a) alleles in common. On the basis of these findings, it was estimated that 78% of the variation in plasma Lp(a) levels in African Americans is attributable to polymorphism at either the apo(a) locus or sequences closely linked to it. Thus, the apo(a) locus is the major determinant of variation in plasma Lp(a) levels in African Americans, as well as in Caucasians. No molecular evidence was found for a common "high-expressing" apo(a) allele in the African Americans. We propose that the higher plasma levels of Lp(a) in Africans are likely due to a yet-to-be-identified trans-acting factor(s) that causes an increase in the rate of secretion of apo(a) or a decrease in its catabolism.  相似文献   

12.
Summary Apolipoprotein(a) [apo(a)] is a large serum glycoprotein with several genetically determined isoforms differing in their apparent molecular weight. We determined the effects of the apo(a) isoforms on total cholesterol, high-density lipo-protein (HDL)-cholesterol, lipoprotein(a), and triglyceride levels in a sample of 473 unrelated Tyrolean adults. Average lipoprotein(a) and total cholesterol levels were significantly different among apo(a) types. These significant differences were found among the 13 apo(a) isoform patterns observed in this sample and among several logical subsets of the isoform patterns (e.g. considering only the single band types). The data suggest that the effects of apo(a) alleles on Lp(a) levels are additive. The effects of apo(a) on total cholesterol levels cannot be entirely explained by the cholesterol fraction estimated to be contained in the lipoprotein(a) particle. We estimate that the apo(a) glycoprotein polymorphism accounts for 41.9% and 9.6% of the variability in lipoprotein(a) and total cholesterol levels, respectively. This is the strongest effect of a single polymorphic gene on plasma lipid and lipoprotein levels reported so far.  相似文献   

13.
In a previous study [C. Doucet et al., J. Lipid Res 35:263–270, 1994], we have shown that plasma lipoprotein (a) [Lp(a)] levels were significantly elevated in a population of unrelated chimpanzees as compared to those in normolipidemic human subjects. Nonetheless, the inverse correlation between Lp(a) levels and apolipoprotein (a) [apo(a)] isoforms typical of man was maintained in the chimpanzee. In the present study, we describe the density profiles of apo B- and apo A1-containing lipoproteins and of Lp(a) in chimpanzee plasmas heterozygous for apo(a) isoforms after fractionation by single spin ultracentrifugation in an isopycnic gradient. The distribution of apo(a) isoforms in the density gradient was also examined by SDS-agarose gel electrophoresis and immunoblotting using chemiluminescence detection. In all double-band phenotypes examined, the smallest isoform was present along the entire length of the density gradient. The density distribution of the second isoform varied according to the size difference between the respective isoforms. Two isoforms close in size (difference in apparent molecular mass ? 60 kDa) were present together in every gradient subfraction. On the contrary, when the two isoforms displayed distinct molecular mass (maximal difference in apparent molecular mass = 340 kDa), then the largest was principally present in the densest fractions of the gradient (d > 1.1 mg/ml). These observations suggest that Lp(a) particles with small apo(a) isoforms are more susceptible to interact with other lipoproteins than are Lp(a) particles with large isoforms.  相似文献   

14.
Lipoprotein (a) [Lp(a)] belongs to the class of highly thrombo-atherogenic lipoproteins. The assembly of Lp(a) from LDL and the specific apo(a) glycoprotein takes place extracellularly in a two-step process. First, an unstable complex is formed between LDL and apo(a) due to the interaction of the unique kringle (K) IV-type 6 (T6) in apo(a) with amino groups on LDL, and in the second step this complex is stabilized by a disulfide bond between apo(a) KIV-T9 and apoB(100). In order to understand this process better, we overexpressed and purified apo(a) KIV-T6 in Escherichia coli. Recombinant KIV-T6 was expressed as a His-tag fusion protein under control of the T7 promoter in BL21 (DE3) strain. After one-step purification by affinity chromatography the yield was 7 mg/l of bacterial suspension. Expressed fusion apo(a) KIV-T6 was insoluble in physiological buffers and it also lacked the characteristic kringle structure. After refolding using a specific procedure, high-resolution (1)H-NMR spectroscopy revealed kringle structure-specific signals. Refolded KIV-T6 bound to Lys-Sepharose with a significantly lower affinity than recombinant apo(a) (EC(50) with epsilon-ACA 0.47 mM versus 2-11 mM). In competition experiments a 1000-fold molar excess of KIV-T6 was needed to reach 60% inhibition of Lp(a) assembly.  相似文献   

15.
Apolipoprotein(a), apo(a), the specific multikringle glycoprotein constituent of lipoprotein(a), Lp(a), occurs in the plasma mostly bound to apoB100-containing lipoproteins but also in a free form. Often the properties of these products are determined after storage in the cold; yet limited information is available on their stability at low temperatures. To shed light on this subject, we examined the effect of two parameters, freezing and lyophilization, in either the absence or the presence of cryopreservatives. Lp(a)s each having a single apo(a) size isoform containing either 14 or 17 kringle (K) IVs were isolated from the plasma of healthy donors by combining density gradient ultracentrifugation and lysine-Sepharose column chromatography using solutions containing both antioxidants and proteolytic inhibitors. Apo(a) was obtained from parent Lp(a) by a mild limited reductive procedure. Either freezing at -20 degrees C or lyophilization in the presence of 5% sucrose did not change the electrophoretic, immunochemical, and lysine-binding properties of Lp(a) including its ability to generate free apo(a). Irrespective of source, apo(a) remained stable when either frozen at -20 and -80 degrees C or lyophilized in the presence of 125 mM trehalose. In all cases, the absence of cryopreservatives caused the samples to aggregate irreversibly. Thawed or reconstituted samples of both free and bound apo(a) kept at 4 degrees C under sterile conditions in the presence of antioxidants, proteolytic inhibitors, and cryopreservative exhibited no significant changes in properties within the time of observation. Both apo(a) isoforms gave comparable results. We conclude that apo(a), either free or bound, can be kept stable at low temperatures in the presence of appropriate cryopreservatives.  相似文献   

16.
17.
Summary We have investigated whether the size heterogeneity of the human apolipoprotein (a) [apo(a)] is due to differences in the number of plasminogen kringle 4-like repeat units present in the different alleles. Using the Southern blot hybridization technique and a DNA probe for the kringle 4 domain of plasminogen, we have observed that in 31 different individuals a 5.8-kb PvuII restriction fragment band varies widely in intensity relative to other bands. A strong correlation (r=0.76, P<0.001) was found between apo(a) protein size and the variation in intensity of the detected restriction fragment band. We confirmed this correlation in a large family where the parents are heterozygous for the apo(a) protein size isoforms. The specificity of the 5.8-kb band was established by using an apo(a)-specific oligonucleotide. These correlations strongly suggest that the observed size heterogeneity in apo(a) protein is due to different numbers of copies of the kringle 4 sequence in the apo(a) glycoprotein gene.  相似文献   

18.
Apolipoprotein (a) is a component of lipoprotein (a). Several studies have shown the association between risk of coronary heart diseases and the size of apo(a) isoforms, although this issue is still controversial. Recent researches focused the attention on the pentanucleotide (TTTTA), highlighting a statistical correlation between low Lp(a) levels and high repeat numbers. In the present paper we studied the distribution of the apo(a) pentanucleotide polymorphism among populations from Corsica, and we then compared it with other populations from Europe, Africa and Asia. The results stressed out the usefulness of these markers in population genetics analysis. We later investigated the possible association of the apo(a) pentanucleotide polymorphism with serum lipid levels in two samples from Corsica (France): one comprises patients or individuals with high risk of future coronary heart disease and the other is a control sample. No significant differences between the two groups have been found, but the analysis of variance showed a significant association between different genotypes and cholesterol and LDL serum levels.  相似文献   

19.
Human apolipoprotein(a) kringle IV type 10 [apo(a) KIV(10)] contains a strong lysine-binding site (LBS) that mediates the interaction of Lp(a) with biological substrates such as fibrin. Mutations in the KIV(10) LBS have been reported in both the rhesus monkey and chimpanzee, and have been proposed to explain the lack of ability of the corresponding Lp(a) species to bind to lysine and fibrin. To further the comparative analyses with other primate species, we sequenced a segment of baboon liver apo(a) cDNA spanning KIV(9) through the protease domain. Like rhesus monkey apo(a), baboon apo(a) lacks a kringle V (KV)-like domain. Interestingly, we found that the baboon apo(a) KIV(10) sequence contains all of the canonical LBS residues. We sequenced the apo(a) KIV(10) sequence from an additional 10 unrelated baboons; 17 of 20 alleles encoded Trp at position 70, whereas only two alleles encoded Arg at this position and thus a defective LBS. Despite the apparent presence of a functional KIV(10) LBS in most of the baboons, none of the Lp(a) in the plasma of the corresponding baboons bound specifically to lysine-Sepharose (agarose) even upon partial purification. Moreover, baboon Lp(a) bound very poorly to plasmin-modified fibrinogen. Expression of baboon and human KIV(10) in bacteria allowed us to verify that these domains bind comparably to lysine and lysine analogues. We conclude that presentation of KIV(10) in the context of apo(a) lacking KV may interfere with the ability of KIV(10) to bind to substrates such as fibrin; this paradigm may also be present in other non-human primates.  相似文献   

20.
Becker L  Cook PM  Koschinsky ML 《Biochemistry》2004,43(31):9978-9988
We have previously demonstrated that, in the presence of the lysine analogue epsilon-aminocaproic acid, apolipoprotein(a) [apo(a)] undergoes a conformational change from a closed to an open structure that is characterized by a change in tryptophan fluorescence, an increase in the radius of gyration, an alteration of domain stability, and an enhancement in the efficiency of covalent lipoprotein(a) [Lp(a)] formation. In the present study, to identify sequences within apo(a) that maintain its closed conformation, we used epsilon-aminocaproic acid to probe the conformational status of a variety of recombinant apo(a) isoforms using analytical ultracentrifugation, differential scanning calorimetry, intrinsic fluorescence, and in vitro covalent Lp(a) formation assays. We observed that the closed conformation of apo(a) is maintained by intramolecular interaction(s) between sequences within the amino- and carboxyl-terminal halves of the molecule. Using site-directed mutagenesis, we have identified the strong lysine-binding site present within apo(a) kringle IV type 10 as an important site within the C-terminal half of the molecule, which is involved in maintaining the closed conformation of apo(a). Apo(a) exhibits marked isoform size heterogeneity because of the presence of varying numbers of copies of the kringle IV type-2 domain located within the amino-terminal half of the molecule. Using recombinant apo(a) species containing either 1, 3, or 8 copies of kringle IV type 2, we observed that, while apo(a) isoform size does not alter the affinity of apo(a) for low-density lipoprotein, it affects the conformational status of the protein and therefore influences the efficiency of covalent Lp(a) assembly. The inverse relationship between apo(a) isoform size and the efficiency of covalent Lp(a) formation that we report in vitro may contribute to the inverse relationship between apo(a) isoform size and plasma Lp(a) concentrations that has been observed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号