首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E undergoes regulated phosphorylation on Ser-209 and this phosphorylation is believed to be important for its binding to mRNA and to other initiation factors. The findings showing that the translation initiation factor eIF4E becomes gradually phosphorylated during in vitro maturation (IVM) of pig oocytes with a maximum in metaphase II (M II) stage oocytes have been documented by us recently (Ellederova et al., 2006). The aim of this work was to study in details the metabolic pathways involved in this process. Using inhibitors of cyclin-dependent kinases, Butyrolactone I (BL I) and protein phosphatases, okadaic acid (OA) we show that ERK1/2 MAP kinase pathway is involved in this phosphorylation. We also demonstrate that activation and phosphorylation of ERK1/2 MAP kinase and eIF4E is associated with the activating phosphorylation of Mnk1 kinase, one of the two main kinases phosphorylating eIF4E in somatic cells.  相似文献   

2.
Background information. The translational inhibitor protein 4E‐BP1 [eIF4E (eukaryotic initiation factor 4E)‐binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5′ cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E‐BP1. Phosphorylation of 4E‐BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E‐BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. Results. We now report that activation of p53 also results in modification of 4E‐BP1 to a truncated form. Unlike full‐length 4E‐BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full‐length 4E‐BP1. Inhibitor studies indicate that the p53‐induced cleavage of 4E‐BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full‐length 4E‐BP1. Measurements of the turnover of 4E‐BP1 indicate that the truncated form is much more stable than the full‐length protein. Conclusions. The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E‐BP1, which may exert a long‐term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth‐inhibitory and pro‐apoptotic effects of p53.  相似文献   

3.
真核生物mRNA的翻译调控,通常发生在起始阶段。异源三聚体复合物eIF4F中的eIF4E与mRNA5'端帽子结构的结合是该阶段的核心,而eIF4E抑制性蛋白正是通过与eIF4E的相互作用而调控着翻译起始过程,进而调控着翻译的速率。eIF4E抑制性蛋白对翻译的这种调控作用对细胞的生长、发育、癌症以及神经生物学方面有巨大影响,现主要就eIF4E抑制性蛋白的翻译调控机制进行综述。  相似文献   

4.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

5.
BACKGROUND INFORMATION: The translational inhibitor protein 4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5' cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E-BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. RESULTS: We now report that activation of p53 also results in modification of 4E-BP1 to a truncated form. Unlike full-length 4E-BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full-length 4E-BP1. Inhibitor studies indicate that the p53-induced cleavage of 4E-BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full-length 4E-BP1. Measurements of the turnover of 4E-BP1 indicate that the truncated form is much more stable than the full-length protein. CONCLUSIONS: The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E-BP1, which may exert a long-term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth-inhibitory and pro-apoptotic effects of p53.  相似文献   

6.
Modulation of mRNA binding to the 40 S ribosomal subunit during translation initiation controls not only global rates of protein synthesis but also regulates the pattern of protein expression by allowing for selective inclusion, or exclusion, of mRNAs encoding particular proteins from polysomes. The mRNA binding step is modulated by signaling through a protein kinase known as the mechanistic target of rapamycin complex 1 (mTORC1). mTORC1 directly phosphorylates the translational repressors eIF4E binding proteins (4E-BP) 1 and 2, releasing them from the mRNA cap binding protein eIF4E, thereby promoting assembly of the eIF4E·eIF4G complex. mTORC1 also phosphorylates the 70-kDa ribosomal protein S6 kinase 1 (p70S6K1), which subsequently phosphorylates eIF4B, and programmed cell death 4 (PDCD4), which sequesters eIF4A from the eIF4E·eIF4G complex, resulting in repressed translation of mRNAs with highly structured 5′-untranslated regions. In the present study, we compared the role of the 4E-BPs in the regulation of global rates of protein synthesis to that of eIF4B and PDCD4. We found that maintenance of eIF4E interaction with eIF4G was not by itself sufficient to sustain global rates of protein synthesis in the absence of mTORC1 signaling to p70S6K1; phosphorylation of both eIF4B and PDCD4 was additionally required. We also found that the interaction of eIF4E with eIF4G was maintained in the liver of fasted rats as well as in serum-deprived mouse embryo fibroblasts lacking both 4E-BP1 and 4E-BP2, suggesting that the interaction of eIF4G with eIF4E is controlled primarily through the 4E-BPs.  相似文献   

7.
8.
Walsh D  Perez C  Notary J  Mohr I 《Journal of virology》2005,79(13):8057-8064
As a viral opportunistic pathogen associated with serious disease among the immunocompromised and congenital defects in newborns, human cytomegalovirus (HCMV) must engage the translational machinery within its host cell to synthesize the viral proteins required for its productive growth. However, unlike many viruses, HCMV does not suppress the translation of host polypeptides. Here, we examine how HCMV regulates the cellular cap recognition complex eIF4F, a critical component of the cellular translation initiation apparatus that recruits the 40S ribosome to the 5' end of the mRNA. This study establishes that the cap binding protein eIF4E, together with the translational repressor 4E-BP1, are both phosphorylated early in the productive viral growth cycle and that the activity of the cellular eIF4E kinase, mnk, is critical for efficient viral replication. Furthermore, HCMV replication also induces an increase in the overall abundance of eIF4F components and promotes assembly of eIF4F complexes. Notably, increasing the abundance of select eIF4F core components and associated factors alters the ratio of active eIF4F complexes in relation to the 4E-BP1 translational repressor, illustrating a new strategy through which members of the herpesvirus family enhance eIF4F activity during their replicative cycle.  相似文献   

9.
Initiation is the rate-limiting step during mRNA 5′ cap-dependent translation, and thus a target of a strict control in the eukaryotic cell. It is shown here by analytical ultracentrifugation and fluorescence spectroscopy that the affinity of the human translation inhibitor, eIF4E-binding protein (4E-BP1), to the translation initiation factor 4E is significantly higher when eIF4E is bound to the cap. The 4E-BP1 binding stabilizes the active eIF4E conformation and, on the other hand, can facilitate dissociation of eIF4E from the cap. These findings reveal the particular allosteric effects forming a thermodynamic cycle for the cooperative regulation of the translation initiation inhibition.  相似文献   

10.
mRNA 5'-cap recognition by the eukaryotic translation initiation factor eIF4E has been exhaustively characterized with the aid of a novel fluorometric, time-synchronized titration method, and X-ray crystallography. The association constant values of recombinant eIF4E for 20 different cap analogues cover six orders of magnitude; with the highest affinity observed for m(7)GTP (approximately 1.1 x 10(8) M(-1)). The affinity of the cap analogues for eIF4E correlates with their ability to inhibit in vitro translation. The association constants yield contributions of non-covalent interactions involving single structural elements of the cap to the free energy of binding, giving a reliable starting point to rational drug design. The free energy of 7-methylguanine stacking and hydrogen bonding (-4.9 kcal/mol) is separate from the energies of phosphate chain interactions (-3.0, -1.9, -0.9 kcal/mol for alpha, beta, gamma phosphates, respectively), supporting two-step mechanism of the binding. The negatively charged phosphate groups of the cap act as a molecular anchor, enabling further formation of the intermolecular contacts within the cap-binding slot. Stabilization of the stacked Trp102/m(7)G/Trp56 configuration is a precondition to form three hydrogen bonds with Glu103 and Trp102. Electrostatically steered eIF4E-cap association is accompanied by additional hydration of the complex by approximately 65 water molecules, and by ionic equilibria shift. Temperature dependence reveals the enthalpy-driven and entropy-opposed character of the m(7)GTP-eIF4E binding, which results from dominant charge-related interactions (DeltaH degrees =-17.8 kcal/mol, DeltaS degrees= -23.6 cal/mol K). For recruitment of synthetic eIF4GI, eIF4GII, and 4E-BP1 peptides to eIF4E, all the association constants were approximately 10(7) M(-1), in decreasing order: eIF4GI>4E-BP1>eIF4GII approximately 4E-BP1(P-Ser65) approximately 4E-BP1(P-Ser65/Thr70). Phosphorylation of 4E-BP1 at Ser65 and Thr70 is insufficient to prevent binding to eIF4E. Enhancement of the eIF4E affinity for cap occurs after binding to eIF4G peptides.  相似文献   

11.
4E-BP1 is a protein that, in its hypophosphorylated state, binds the mRNA cap-binding protein eIF4E and represses cap-dependent mRNA translation. By doing so, it plays a major role in the regulation of gene expression by controlling the overall rate of mRNA translation as well as the selection of mRNAs for translation. Phosphorylation of 4E-BP1 causes it to release eIF4E to function in mRNA translation. 4E-BP1 is also subject to covalent addition of N-acetylglucosamine to Ser or Thr residues (O-GlcNAcylation) as well as to truncation. In the truncated form, it is both resistant to phosphorylation and able to bind eIF4E with high affinity. In the present study, Ins2(Akita/+) diabetic mice were used to test the hypothesis that hyperglycemia and elevated flux of glucose through the hexosamine biosynthetic pathway lead to increased O-GlcNAcylation and truncation of 4E-BP1 and consequently decreased eIF4E function in the liver. The amounts of both full-length and truncated 4E-BP1 bound to eIF4E were significantly elevated in the liver of diabetic as compared with non-diabetic mice. In addition, O-GlcNAcylation of both the full-length and truncated proteins was elevated by 2.5- and 5-fold, respectively. Phlorizin treatment of diabetic mice lowered blood glucose concentrations and reduced the expression and O-GlcNAcylation of 4E-BP1. Additionally, when livers were perfused in the absence of insulin, 4E-BP1 phosphorylation in the livers of diabetic mice was normalized to the control value, yet O-GlcNAcylation and the association of 4E-BP1 with eIF4E remained elevated in the liver of diabetic mice. These findings provide insight into the pathogenesis of metabolic abnormalities associated with diabetes.  相似文献   

12.
Meiotic maturation of mammalian oocytes (transition from prophase I to metaphase II) is accompanied by complex changes in the protein phosphorylation pattern. At least two major protein kinases are involved in these events; namely, cdc2 kinase and mitogen-activated protein (MAP) kinase, because the inhibition of these kinases arrest mammalian oocytes in the germinal vesicle (GV) stage. We show that during meiotic maturation of bovine oocytes, the translation initiation factor, eIF4E (the cap binding protein), gradually becomes phosphorylated. This substantial phosphorylation begins at the time of germinal vesicle breakdown (GVBD) and continues to the metaphase II stage. The onset of eIF4E phosphorylation occurs in parallel with a significant increase in overall protein synthesis. However, although eIF4E is nearly fully phosphorylated in metaphase II oocytes, protein synthesis reaches only basal levels at this stage, similar to that of prophase I oocytes, in which the factor remains unphosphorylated. We present evidence that a specific repressor of eIF4E, the binding protein 4E-BP1, is present and could be involved in preventing eIF4E function in metaphase II stage oocytes. Recently, two protein kinases, called Mnk1 and Mnk2, have been identified in somatic cells as eIF4E kinases, both of which are substrates of MAP kinase in vivo. In bovine oocytes, a specific inhibitor of cdk kinases, butyrolactone I, arrests oocytes in GV stage and prevents activation of both cdc2 and MAP kinase. Under these conditions, the phosphorylation of eIF4E is also blocked, and its function in initiation of translation is impaired. In contrast, PD 098059, a specific inhibitor of the MAP kinase activation pathway, which inhibits the MAP kinase kinase, called MEK function, leads only to a postponed GVBD, and a delay in MAP kinase and eIF4E phosphorylation. These results indicate that in bovine oocytes, 1) MAP kinase activation is only partially dependent on MEK kinase, 2) MAP kinase is involved in eIF4E phosphorylation, and 3) the abundance of fully phosphorylated eIF4E does not necessarily directly stimulate protein synthesis. A possible MEK kinase-independent pathway of MAP kinase phosphorylation and the role of 4E-BP1 in repressing translation in metaphase II oocytes are discussed.  相似文献   

13.
Potyvirus RNA contains at the 5' end a covalently linked virus-encoded protein VPg, which is required for virus infectivity. This role has been attributed to VPg interaction with the eukaryotic translation initiation factor eIF4E, a cap-binding protein. We characterized the dissociation constants for the interaction of the potato virus Y VPg with different plant eIF4Es and its isoforms and mapped the eIF(iso)4E attachment region on VPg. VPg/eIF4E interaction results in the inhibition of cell-free protein synthesis, and we show that it stems from the liberation of the cap moiety from the complex with eIF4E. Since VPg does not attach the cap, it appears that VPg induces changes in the eIF4E structure, diminishing its affinity to the cap. We show here that the initiation complex scaffold protein eIF(iso)4G increases VPg interaction with eIF(iso)4E. These data together suggest similar cap and VPg interactions with eIF4E and characterize VPg as a novel eIF4E-binding protein, which inhibits host protein synthesis at a very early stage of the initiation complex formation through the inhibition of cap attachment to the initiation factor eIF4E.  相似文献   

14.
Translation of cyclin mRNAs represents an important event for proper meiotic maturation and post-fertilization mitoses in many species. Translational control of cyclin B mRNA has been described to be achieved through two separate but related mechanisms: translational repression and polyadenylation. In this paper, we evaluated the contribution of global translational regulation by the cap-dependent translation repressor 4E-BP (eukaryotic initiation factor 4E-binding protein) on the cyclin B protein synthesis during meiotic maturation of the starfish oocytes. We used the immunosupressant drug rapamycin, a strong inhibitor of cap-dependent translation, to check for the involvement of this protein synthesis during this physiological process. Rapamycin was found to prevent dissociation of 4E-BP from the initiation factor eIF4E and to suppress correlatively a burst of global protein synthesis occurring at the G2/M transition. The drug had no effect on first meiotic division but defects in meiotic spindle formation prevented second polar body emission, demonstrating that a rapamycin-sensitive pathway is involved in this mechanism. While rapamycin affected the global protein synthesis, the drug altered neither the specific translation of cyclin B mRNA nor the expression of the Mos protein. The expression of these two proteins was correlated with the phosphorylation and the dissociation of the cytoplasmic polyadenylation element-binding protein from eIF4E.  相似文献   

15.
Cap-dependent ribosome recruitment to eukaryotic mRNAs during translation initiation is stimulated by the eukaryotic initiation factor (eIF) 4F complex and eIF4B. eIF4F is a heterotrimeric complex composed of three subunits: eIF4E, a 7-methyl guanosine cap binding protein; eIF4A, a DEAD-box RNA helicase; and eIF4G. The interactions of eIF4E, eIF4A, and eIF4B with mRNA have previously been monitored by chemical- and UV-based cross-linking approaches aimed at characterizing the initial protein/mRNA interactions that lead to ribosome recruitment. These studies have led to a model whereby eIF4E interacts with the 7-methyl guanosine cap structure in an ATP-independent manner, followed by an ATP-dependent interaction of eIF4A and eIF4B. Herein, we apply a splint-ligation-mediated approach to generate 4-thiouridine-containing mRNA adjacent to a radiolabel group that we utilize to monitor cap-dependent cross-linking of proteins adjacent to, and downstream from, the cap structure. Using this approach, we demonstrate interactions between eIF4G, eIF4H, and eIF3 subunits with the mRNA during the cap recognition process.  相似文献   

16.
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.  相似文献   

17.
Previously we demonstrated that secondary products of plant mevalonate metabolism called isoprenoids attenuate 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA translational efficiency and cause tumor cell death. Here we compared effects of "pure" isoprenoids (perillyl alcohol and gamma-tocotrienol) and a "mixed" isoprenoid-genistein-on the PKB/Akt/mTOR pathway that controls mRNA translation and m(7)GpppX eIF4F cap binding complex formation. Effects were cell- and isoprenoid-specific. Perillyl alcohol and genistein suppressed 4E-BP1(Ser65) phosphorylation in prostate tumor cell lines, DU145 and PC-3, and in Caco2 adenocarcinoma cells. Suppressive effects were similar to or greater than that observed with a PI3 kinase inhibitor or rapamycin, an mTOR inhibitor. 4E-BP1(Thr37) phosphorylation was reduced by perillyl alcohol and genistein in DU145, but not in PC-3. Conversely, perillyl alcohol but not genistein decreased 4E-BP1(Thr37) phosphorylation in Caco2. PKB/Akt activation via Ser473 phosphorylation was enhanced in DU145 by perillyl alcohol and in PC-3 by gamma-tocotrienol, but was suppressed by genistein. Importantly, perillyl alcohol disrupted interactions between eIF4E and eIF4G, key components of eIF4F (m(7)GpppX) cap binding complex. These results demonstrate that "pure" isoprenoids and genistein differentially impact cap-dependent translation in tumor cell lines.  相似文献   

18.
The mRNA's cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.  相似文献   

19.
Unlike other positive-stranded RNA viruses that use either a 5'-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5' end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF 4 E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF 4 E by 4 E-BP 1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF 4 E and the cap structure or 4 E-BP 1, suggesting that VPg binds to eIF 4 E at a different site from both cap and 4 E-BP 1. This work lends support to the idea that calicivirus VPg acts as a novel 'cap substitute' during initiation of translation on virus mRNA.  相似文献   

20.
The translation initiation factors eIF4E and eIF(iso)4E play a key role during virus infection in plants. During mRNA translation, eIF4E provides the cap-binding function and is associated with the protein eIF4G to form the eIF4F complex. Susceptibility analyses of Arabidopsis mutants knocked-out for At-eIF4G genes showed that eIF4G factors are indispensable for potyvirus infection. The colonization pattern by a viral recombinant carrying GFP indicated that eIF4G is involved at a very early infection step. Like eIF4E, eIF4G isoforms are selectively recruited for infection. Moreover, the eIF4G selective involvement parallels eIF4E recruitment. This is the first report of a coordinated and selective recruitment of eIF4E and eIF4G factors, suggesting the whole eIF4F recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号