首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the effects of mutation of Gln32, a component of a base recognition site (B2 site) of a base-nonspecific RNase from Rhizopus niveus, we prepared several enzymes mutant at this position, Q32F, Q32L, Q32V, Q32T, Q32D, Q32N, and Q32E, and their enymatic activities toward RNA and 16 dinucleoside phosphates were measured. Enzymatic activities of the mutant enzymes towards RNA were between 10-125% of the native enzyme. From the rates of hydrolysis of 16 dinucleoside phosphates by mutant enzymes, we estimated the base specificity of both B1 and B2 sites. The results indicated that mutation of Gln32 to Asp, Asn, and Glu caused the B2 site to prefer cytosine more and to a less extent, to prefer uracil (Q32N), and that Q32F made the enzyme more guanine-base preferential. The results suggested that we are able to construct an enzyme that preferentially cleaves internucleotidic linkages, at the 5'-side of cytosine residues (Q32D, Q32N, and Q32E) and guanine residues (Q32F and Q32T), thus, cleaves purine-C(Q32D, Q32N, Q32E) and GpG and ApG (Q32F, and Q32T) most easily. The results seemed to suggest converting a base-non-specific RNase to a base-specific one.  相似文献   

2.
A base-nonspecific and acid ribonuclease (RNase Ok2) was purified from the liver of a salmon (Oncorhnchus keta) to a homogeneous state by SDS-PAGE. The primary structure of RNase Ok2 was determined by protein chemistry and molecular cloning. The RNase Ok2 was a glycoprotein and consisted of 216 amino acid residues. Its molecular mass of protein moiety was 25,198, and its amino acid sequence showed that it belongs to the RNase T2 family of enzymes. The optimal pH of RNase Ok2 was around 5.5. The base preferences at the B1 and B2 sites were estimated from the rates of hydrolysis of 16 dinucleoside phosphates to be G>A>U, C, and G>A>U>C respectively. In this enzyme, one of the three histidine residues which have been thought to be important for catalysis of RNase Rh, a typical RNase of this family of enzymes, His104 was replaced by tyrosine residue. Based on the results, the role of H104, which has been proposed to be a phosphate binding site with a substrate, was reconsidered, and we proposed a revised role of this His residue in the hydrolysis mechanism of RNase T2 family enzymes.  相似文献   

3.
Base specificity and other enzymatic properties of two protozoan RNases, RNase Phyb from a true slime mold (Physarum polycephalum) and RNase DdI from a cellular slime mold (Dictyostelium discoideum), were compared. These two RNases have high amino acid sequence similarity (83 amino acid residues, 46%). The base specificities of two base recognition sites, The B1 site (base recognition site for the base at 5'-side of scissile phosphodiester bond) and the B2 site (base recognition site for the base at 3'-side of the scissile bond) of the both enzymes were estimated by the rates of hydrolysis of 16 dinucleoside phosphates. The base specificities estimated of B1 and B2 sites of RNase Phyb and RNase DdI were A, G, U > C and A > or = G > C > U, and A > or = G, U > C and G > U > A, C, respectively. The base specificities estimated from the depolymerization of homopolynucleotides and those from the releases of four mononucleotides upon digestion of RNA coincided well with those of the B2 sites of both enzymes. Thus, in these enzymes, the contribution of the B2 site to base specificity seems to be larger than that of the B1 site. pH-stability, optimum temperature, and temperature stability, of both enzymes are discussed considering that RNase Phyb has one disulfide bridge deleted, compared to the RNase DdI with four disulfide bridges.  相似文献   

4.
The primary structures of the blood vessel inducing protein human angiogenin and human pancreatic ribonuclease (RNase) are 35% identical. Angiogenin catalyzes the limited cleavage of ribosomal RNA (18 and 28 S), yielding a characteristic pattern of polynucleotide products, but shows no significant activity toward conventional pancreatic RNase substrates [Shapiro, R., Riordan, J. F., & Vallee, B. L. (1986) Biochemistry 25, 3527-3532]. Angiogenin/RNase hybrid enzymes--wherein particular regions of primary structure in RNase are replaced by the corresponding segments of angiogenin--serve to explore the structural features underlying angiogenin's characteristic activities. Herein we show that synthetic angiogenin peptides, Ang(1-21) and Ang(108-123), form noncovalent complexes with inactive fragments of bovine RNase A--RNase(21-124) (i.e., S-protein) and RNase(1-118), respectively--with regeneration of activity toward conventional RNase substrates. Maximal activities for the Ang(1-21)/S-protein complex (Kd = 1.0 microM) are 52%, 45%, and 15% toward cytidine cyclic 2',3'-phosphate, cytidylyl(3'----5')adenosine, and yeast RNA, respectively. In contrast, activities of the RNase(1-118)/Ang(108-123) hybrid (Kd = 25 microM) are 1-2 orders of magnitude lower toward cyclic nucleotides and dinucleoside phosphates. However, substitution of phenylalanine for Leu-115 in Ang(108-123) increases activity up to 100-fold. Both His-13 and His-114 in the angiogenin peptides are required for activity since their substitution by alanine yields inactive complexes. Importantly, the pattern of polynucleotide products formed during cleavage of ribosomal RNA by the Ang(1-21)/S-protein hybrid shows a striking resemblance to that formed by angiogenin, demonstrating that the hybrid retains features of both angiogenin and RNase A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The ribonuclease MC1 (RNase MC1) from seeds of bitter gourd (Momordica charantia) consists of 190 amino acids and belongs to the RNase T2 family, including fungal RNases typified by RNase Rh from Rhizopus niveus. We expressed RNase MC1 in Escherichia coli cells and made use of site-directed mutagenesis to identify essential amino acid residues for catalytic activity. Mutations of His34 and His88 to Ala completely abolished the enzymatic activity, and considerable decreases in the enzymatic activity were observed in cases of mutations of His83, Glu84, and Lys87, when yeast RNA was used as a substrate. Kinetic parameters for the enzymatic activity of the mutants of His83, Glu84, and Lys87 were analyzed using a dinucleoside monophosphate CpU. Km values for the mutants were approximately like that for wild-type, while k(cat) values were decreased by about 6 to 25-fold. These results suggest that His34, His83, Glu84, Lys87, and His88 in RNase MC1 may be involved in the catalytic function. These observation suggests that RNase MC1 from a plant catalyzes RNA degradation in a similar manner to that of fungal RNases.  相似文献   

6.
Human angiogenin (Ang) is an RNase in the pancreatic RNase superfamily that induces angiogenesis. Its catalytic activity is comparatively weak, but nonetheless critical for biological activity. The crystal structure of Ang has shown that enzymatic potency is attenuated in part by the obstructive positioning of Gln117 within the B(1) pyrimidine binding pocket, and that the C-terminal segment of residues 117-123 must reorient for Ang to bind and cleave RNA. The native closed conformation appears to be stabilized by Gln117-Thr44 and Asp116-Ser118 hydrogen bonds, as well as hydrophobic packing of Ile119 and Phe120. Consistent with this view, Q117G, D116H, and I119A/F120A variants are 4-30-fold more active than Ang. Here we have determined crystal structures for these variants to examine the structural basis for the activity increases. In all three cases, the C-terminal segment remains obstructive, demonstrating that none of the residues that has been replaced is essential for maintaining the closed conformation. The Q117G structure shows no changes other than the loss of the side chain of residue 117, whereas those of D116H and I119A/F120A reveal C-terminal perturbations beyond the replacement site, suggesting that the native closed conformation has been destabilized. Thus, the interactions of Gln117 seem to be less important than those of residues 116, 119, and 120 for stabilization. In D116H, His116 does not replicate either of the hydrogen bonds of Asp116 with Ser118 and instead forms a water-mediated interaction with catalytic residue His114; residues 117-121 deviate significantly from their positions in Ang. In I119A/F120A, the segment of residues 117-123 has become highly mobile and all of the interactions thought to position Gln117 have been weakened or lost; the space occupied by Phe120 in Ang is partially filled by Arg101, which has moved several angstroms. A crystal structure was also determined for the deletion mutant des(121-123), which has 10-fold reduced activity toward large substrates. The structure is consistent with the earlier proposal that residues 121-123 form part of a peripheral substrate binding subsite, but also raises the possibility that changes in the position of another residue, Lys82, might be responsible for the decreased activity of this variant.  相似文献   

7.
Site-directed mutagenesis study was performed to elucidate the role of conserved tryptophan-101 present at the active site of phosphoserine aminotransferase from an enteric human parasite Entamoeba histolytica. Fluorescence resonance energy transfer and molecular dynamic simulation show that the indole ring of Trp101 stacks with the cofactor PLP. Loss of enzymatic activity and PLP polarization values suggest that Trp101 plays a major role in maintaining a defined PLP microenvironment essentially required for optimal enzymatic activity. Studies on W101F, W101H and W101A mutants show that only the indole ring of the conserved Trp101 forms most favorable stacking interaction with the pyridine ring of the cofactor PLP. Protein stability was compromised on substitution of Trp101 with Phe/His/Ala amino acids. A difference in conformational free energy of 1.65?kcal?mol(-1) was observed between WT-protein and W101A mutant.  相似文献   

8.
On the basis of molecular dynamics and free-energy perturbation approaches, the Glu46Gln (E46Q) mutation in the guanine-specific ribonuclease T1 (RNase T1) was predicted to render the enzyme specific for adenine. The E46Q mutant was genetically engineered and characterized biochemically and crystallographically by investigating the structures of its two complexes with 2'AMP and 2'GMP. The ribonuclease E46Q mutant is nearly inactive towards dinucleoside phosphate substrates but shows 17% residual activity towards RNA. It binds 2'AMP and 2'GMP equally well with dissociation constants of 49 microM and 37 microM, in contrast to the wild-type enzyme, which strongly discriminates between these two nucleotides, yielding dissociation constants of 36 microM and 0.6 microM. These data suggest that the E46Q mutant binds the nucleotides not to the specific recognition site but to the subsite at His92. This was confirmed by the crystal structures, which also showed that the Gln46 amide is hydrogen bonded to the Phe100 N and O atoms, and tightly anchored in this position. This interaction may either have locked the guanine recognition site so that 2'AMP and 2'GMP are unable to insert, or the contribution to guanine recognition of Glu46 is so important that the E46Q mutant is unable to function in recognition of either guanine and adenine.  相似文献   

9.
The function of the conserved Phe 100 residue of RNase T1 (EC 3.1.27.3) has been investigated by site-directed mutagenesis and X-ray crystallography. Replacement of Phe 100 by alanine results in a mutant enzyme with kcat reduced 75-fold and a small increase in Km for the dinucleoside phosphate substrate GpC. The Phe 100 Ala substitution has similar effects on the turnover rates of GpC and its minimal analogue GpOMe, in which the leaving cytidine is replaced by methanol. The contribution to catalysis is independent of the nature of the leaving group, indicating that Phe 100 belongs to the primary site. The contribution of Phe 100 to catalysis may result from a direct van der Waals contact between its aromatic ring and the phosphate moiety of the substrate. Phe 100 may also contribute to the positioning of the pentacovalent phosphorus of the transition state, relative to other catalytic residues. If compared to the corresponding wild-type data, the structural implications of the mutation in the present crystal structure of Phe 100 Ala RNase T1 complexed with the specific inhibitor 2'-GMP are restricted to the active site. Repositioning of 2'-GMP, caused by the Phe 100 Ala mutation, generates new or improved contacts of the phosphate moiety with Arg 77 and His 92. In contrast, interactions with the Glu 58 carboxylate appear to be weakened. The effects of the His 92 Gln and Phe 100 Ala mutations on GpC turnover are additive in the corresponding double mutant, indicating that the contribution of Phe 100 to catalysis is independent of the catalytic acid His 92. The present results lead to the conclusion that apolar residues may contribute considerably to catalyze conversions of charged molecules to charged products, involving even more polar transition states.  相似文献   

10.
The carboxyl group in a ribonuclease from Rhizopus sp. (RNase Rh) was modified by a water-soluble carbodiimide, 1-cyclohexyl-3-(2-morpholinyl-(4)-ethyl)carbodiimide p-toluenesulfonate (CMC). From the relation between the extent of modification and the enzymatic activity, it was concluded that at least the modification of two carboxyl groups seemed to induce the loss in enzymatic activity. In the presence of 1 M cytidine, RNase Rh activity was protected from the CMC-modification. Under conditions in which the enzyme was inactivated to 20% activity, about 70% of the enzymatic activity was retained in the presence of cytidine. The inactivation of the RNase Rh pre-treated with CMC in the presence of cytidine with [14C]CMC indicated that the RNase Rh lost its enzymatic activity with the incorporation of about one [14C]CMC. Therefore, it could be concluded that one carboxyl group is involved in the active site of RNase Rh. The binding of the CMC-modified RNase Rh with 2'-AMP was studied spectrophotometrically. The affinity of the modified RNase Rh towards 2'-AMP decreased markedly upon CMC modification.  相似文献   

11.
In order to study the structure-function relationship of an RNase T2 family enzyme, RNase Rh, from Rhizopus niveus, we investigated the roles of three histidine residues by means of site-specific mutagenesis. One of the three histidine residues of RNase RNAP Rh produced in Saccharomyces cerevisiae by recombinant DNA technology was substituted to a phenylalanine or alanine residue. A Phe or Ala mutant enzyme at His46 or His109 showed less than 0.03%, but a mutant enzyme at His104 showed 0.54% of the enzymatic activity of the wild-type enzyme with RNA as a substrate. Similar results were obtained, when ApU was used as a substrate. The binding constant of a Phe mutant enzyme at His46 or His109 towards 2'-AMP decreased twofold, but that at His104 decreased more markedly. Therefore, we assumed that these three histidine residues are components of the active site of RNase Rh, that His104 contributes to some extent to the binding and less to the catalysis, and that the other two histidine residues and one carboxyl group not yet identified are probably involved in the catalysis. We assigned the C-2 proton resonances of His46, His104, and His109 by comparison of the 1H-NMR spectra of the three mutant enzymes containing Phe in place of His with that of the native enzyme, and also determined the individual pKa values for His46 and His104 to be 6.70 and 5.94. His109 was not titrated in a regular way, but the apparent pKa value was estimated to be around 6.3. The fact that addition of 2'-AMP caused a greater effect on the chemical shift of His104 in the 1NMR spectra as compared with those of the other histidine residues, may support the idea described above on the role of His104.  相似文献   

12.
Abstract Using site-saturation mutagenesis, we have established all possible amino acid substitutions at Tyr26 and Phe73 that are compatible with biological activity of the gene 5 protein in vivo. No substitutions were found at either site that gave rise to a fully functional gene 5 protein, indicating that these two amino acid residues are crucial. However, partial activity was found if either residue was replaced by another aromatic amino acid (Y26F, Y26W, F73Y, F73W). The results suggest that both Tyr26 and Phe73 are important for base stacking in the nucleoprotein complex. The functional consequences of the removal of the hydroxyl group from Tyr26 argue that this residue may, in addition, be involved in hydrogen bond formation to confer greater stability on the complex. In contrast, the addition of such a group to Phe73 reduces activity.  相似文献   

13.
A Gengenbach  S Syn  X Wang  Y Lu 《Biochemistry》1999,38(35):11425-11432
Trp191Phe and Trp51Phe mutations have been introduced into an engineered cytochrome c peroxidase (CcP) containing a Mn(II)-binding site reported previously (MnCcP; see Yeung, B. K.-S., et al. (1997) Chem. Biol. 5, 215-221). The goal of the present study is to elucidate the role of tryptophans in peroxidase activity since CcP contains both Trp51 and Trp191 while manganese peroxidase (MnP) contains phenylalanine residues at the corresponding positions. The presence of Trp191 in CcP allows formation of a unique high-valent intermediate containing a ferryl oxo and tryptophan radical called compound I'. The absence of a tryptophan residue at this position in MnP is the main reason for the formation of an intermediate called compound I which contains a ferryl oxo and porphyrin pi-cation radical. In this study, we showed that introduction of the Trp191Phe mutation to MnCcP did not improve MnP activity (specific activity: MnCcP, 0.750 micromol min-1 mg-1; MnCcP(W191F), 0.560 micromol min-1 mg-1. k(cat)/K(m): MnCcP, 0.0517 s-1 mM-1; MnCcP(W191F), 0.0568 s-1 mM-1) despite the fact that introduction of the same mutation to WTCcP caused the formation of a transient compound I (decay rate, 60 s-1). However, introducing both the Trp191Phe and Trp51Phe mutations not only resulted in a longer lived compound I in WTCcP (decay rate, 18 s-1), but also significantly improved MnP activity in MnCcP (MnCcP(W51F, W191F): specific activity, 8.0 micromol min-1 mg-1; k(cat)/K(m), 0. 599 s-1 mM-1). The increase in activity can be attributed to the Trp51Phe mutation since MnCcP(W51F) showed significantly increased MnP activity relative to MnCcP (specific activity, 3.2 micromol min-1 mg-1; k(cat)/K(m), 0.325 s-1 mM-1). As with MnP, the activity of MnCcP(W51F, W191F) was found to increase with decreasing pH. Our results demonstrate that, while the Trp191Phe and Trp51Phe mutations both play important roles in stabilizing compound I, only the Trp51Phe mutation contributes significantly to increasing the MnP activity because this mutation increases the reactivity of compound II, whose oxidation of Mn(II) is the rate-determining step in the reaction mechanism.  相似文献   

14.
Human angiogenin (Ang) is a potent inducer of blood vessel formation and is a member of the pancreatic ribonuclease superfamily. Its enzymatic activity is unusually weak and biased toward cleavage after cytidine nucleotides. As part of an ongoing investigation into the structural basis of Ang's characteristic activity, we have determined the crystal structures of three Ang variants having novel activity. (i) The structure of T44D-Ang indicates that Asp44 can participate directly in pyrimidine binding and that the intrinsic hydrogen-bonding capability of this residue largely governs the pyrimidine specificity of this variant. Unexpectedly, the mutation also causes the most extensive disruption of the C-terminus seen in any Ang variant thus far. This allows the side chain of Arg101 to penetrate the B(1) site, raising the possibility that it participates in substrate binding as occurs in ribonuclease 4. (ii) The structure of T80A-Ang supports the view that Thr80 plays little role in maintaining the obstructive conformation of the C-terminus and that its participation in a hydrogen bond with Thr44 selectively weakens the interaction between Thr44 and N3 of cytosine. (iii) ARH-II is an angiogenin/RNase A chimera in which residues 38-41 of Ang are replaced with the corresponding residues (38-42) of RNase A. Its structure suggests that the guest segment influences catalysis by subtle means, possibly by reducing the pK(a) of the catalytic lysine. The loss of angiogenic activity is not attributable to disruption of known cell-binding or nuclear translocation sites but may be a consequence of the chimera's enhanced ribonucleolytic activity.  相似文献   

15.
Ribonuclease L (RNase L) is a key enzyme in the 2-5A host defense system, and its activity is strictly regulated by an unusual 2',5'-linked oligoadenylate (2-5A). A bipartite model, in which the N-terminal half of RNase L is responsible for the 2-5A binding and the C-terminal half alone is able to hydrolyse the substrate RNA, has been proposed on the basis of the results of deletion mutant analyses [Dong, B. & Silverman, R.H. (1997) J. Biol. Chem.272, 22236-22242]. Above all, the region between Glu711 and His720 was revealed to be essential for RNA binding and/or hydrolysis. To dissect the function of the region, we performed scanning mutagenesis over the 10 residues of glutathione S-transferase (GST)-fusion RNase L. Among the single amino acid mutants examined, Y712A and F716A resulted in a significant decrease of RNase activity with a reduced RNA binding acitivity. The losses of the RNase activity were not restored by its conservative mutation, whereas the RNA binding activity was enhanced in the case of Y712F. These results indicate that both Tyr712 and Phe716 provide the enzyme with a RNA binding activity and catalytic environment.  相似文献   

16.
In order to elucidate the structure-function relationship of RNases belonging to the RNase T2 family (base non-specific and adenylic acid-preferential RNase), an RNase of this family was purified from Trichoderma viride (RNase Trv) to give three closely adjacent bands with RNase activity on slab-gel electrophoresis in a yield of 20%. The three RNases gave single band with the same mobility on slab-gel electrophoresis after endoglycosidase F digestion. The enzymatic properties including base specificity of RNase Trv were very similar to those of typical T2-family RNases such as RNase T2 from Aspergillus oryzae and RNase M from A. saitoi. The specific activity of RNase Trv towards yeast RNA was about 13-fold higher than that of RNase M. The complete primary structure of RNase Trv was determined by analyses of the peptides generated by digestion of reduced and carboxymethylated RNase Trv with Staphylococcus aureus V8 protease, lysylendopeptidase and alpha-chymotrypsin. The molecular weight of the protein moiety deduced from the sequence was 25,883. The locations of 10 half-cystine residues were almost superimposable upon those of other RNases of this family. The homologies between RNase Trv and RNase T2, RNase M, and RNase Rh (Rhizopus niveus) were 124, 132, and 92 residues, respectively. The sequences around three histidine residues, His52, His109, and His114, were highly conserved in these 4 RNases.  相似文献   

17.
Acetolactate synthase (ALS) catalyzes the first common step in the biosynthesis of valine, leucine, and isoleucine. ALS is the target of three classes of herbicides, the sulfonylureas, the imidazolinones, and the triazolopyrimidines. Five mutants (W266F, W439F, W490F, W503F, and W573F) of the ALS gene from Nicotiana tabacum were constructed and expressed in Escherichia coli, and the enzymes were purified. The W490F mutation abolished the binding affinity for cofactor FAD and inactivated the enzyme. The replacement of Trp573 by Phe yielded a mutant ALS resistant to the three classes of herbicides. The other three mutations, W266F, W439F, and W503F, did not significantly affect the enzymatic properties and the sensitivity to the herbicides. These results indicate that the Trp490 residue is essential for the binding of FAD and that Trp573 is located at the herbicide binding site. The data also suggest that the three classes of herbicides bind ALS competitively.  相似文献   

18.
Rasmussen TA  Nolan JM 《Gene》2002,294(1-2):177-185
G350 of Escherichia coli RNase P RNA is a highly conserved residue among all bacteria and lies near the known magnesium binding site for the RNase P ribozyme, helix P4. Mutations at G350 have a dramatic effect on substrate cleavage activity for both RNA alone and holoenzyme; the G350C mutation has the most severe phenotype. The G350C mutation also inhibits growth of cells that express the mutant RNA in vivo under conditions of magnesium starvation. The results suggest that G350 contributes to Mg(2+) binding at helix P4 of RNase P RNA.  相似文献   

19.
Chen DT  Lin A 《Protein engineering》2002,15(12):997-1003
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号